版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省霍邱县正华外语学校2025届高三第二学期4月模拟考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知i为虚数单位,则()A. B. C. D.2.已知角的终边经过点,则A. B.C. D.3.已知复数满足:(为虚数单位),则()A. B. C. D.4.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.6.若数列满足且,则使的的值为()A. B. C. D.7.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.8.执行如图所示的程序框图,则输出的的值为()A. B.C. D.9.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④10.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则()A. B. C. D.11.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()A. B. C. D.12.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.若函数在和上均单调递增,则实数的取值范围为________.14.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.15.假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为________.16.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围.18.(12分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.19.(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,且.20.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.22.(10分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.2.D【解析】因为角的终边经过点,所以,则,即.故选D.3.A【解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.4.A【解析】
设成立;反之,满足,但,故选A.5.C【解析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.6.C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.7.B【解析】
为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.8.B【解析】
列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.9.B【解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.10.D【解析】
由半圆面积之比,可求出两个直角边的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【详解】解:由题意知,以为直径的半圆面积,以为直径的半圆面积,则,即.由,得,所以.故选:D.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.11.B【解析】
令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.12.D【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可.【详解】由知,当时,在和上单调递增,在和上均单调递增,,
,
的取值范围为:.
故答案为:.【点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题.14.【解析】
作出图像,设点,根据已知可得,,且,可解出,计算即得.【详解】如图,设,圆心坐标为,可得,,,,,解得,,即的长是.故答案为:【点睛】本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.15.【解析】
分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计算再求和即可.【详解】刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑出优秀的概率为.故答案为:【点睛】本题主要考查了分类方法求解事件概率的问题,属于基础题.16.【解析】
设,判断为偶函数,考虑x>0时,的解析式和零点个数,利用导数分析函数的单调性,作函数大致图象,即可得到的范围.【详解】设,则在是偶函数,当时,,由得,记,,,故函数在增,而,所以在减,在增,,当时,,当时,,因此的图象为因此实数的取值范围是.【点睛】本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,①当时,在上恒成立,则在上单调递增,从而成立,故符合题意;②当时,令,解得,即在上单调递减,则,故不符合题意;③当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【点睛】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.18.见解析【解析】
(1)当时,函数,其定义域为,则,设,,易知函数在上单调递增,且,所以当时,,即;当时,,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值.(2)由题可得函数的定义域为,,设,,显然函数在上单调递增,当时,,,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,,,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,,,因为,所以,,又,所以函数在内有一个零点,所以函数有且仅有一个零点.综上,函数有且仅有一个零点.19.(1)(2)证明见解析【解析】
(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;(2)利用导数可得,,再构造新函数,利用导数求其最值即可得证.【详解】(1)函数的定义域为,,则(1),(1),故曲线在点,(1)处的切线方程为,又曲线在点,(1)处的切线方程为,,;(2)证明:由(1)知,,则,令,则,易知在单调递减,又,(1),故存在,使得,且当时,,单调递增,当,时,,单调递减,由于,(1),(2),故存在,使得,且当时,,,单调递增,当,时,,,单调递减,故函数存在唯一的极大值点,且,即,则,令,则,故在上单调递增,由于,故(2),即,.【点睛】本题考查导数的几何意义以及利用导数研究函数的单调性,极值及最值,考查推理论证能力,属于中档题.20.(1)证明见解析(2)【解析】
(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【点睛】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.21.(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【解析】
(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【详解】(1),当时,,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)可知:当时,,∴成立.当时,,,∴.当时,,,∴,即.综上.【点睛】本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.(1);(2)见解析【解析】
(1)求出,记,问题转化为方程有两个不同解,求导,研究极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年芜湖市镜湖区医院招聘6名考试备考题库及答案解析
- 2026四川甘孜州康定市兵役登记暨征兵宣传笔试备考试题及答案解析
- 2026北京师范大学宁德实验学校招聘教师7人(福建)笔试备考试题及答案解析
- 2025云南盈恒投资开发有限公司招聘3人考试备考题库及答案解析
- 2025安徽蚌埠怀远县教育局所属事业单位紧缺专业人才引进22人考试参考题库及答案解析
- 2025年江西省水务集团有限公司社会招聘(34人)笔试模拟试题及答案解析
- 2025江苏南京大学地理与海洋科学学院准聘长聘岗位(事业编制)招聘3人笔试备考题库及答案解析
- 2026云南玉溪市红塔区妇幼保健院第一批就业见习岗位招募7人笔试备考题库及答案解析
- 2025江西省金合控股集团有限公司副总经理及财务总监2人笔试模拟试题及答案解析
- 2025年下半年四川凉山州昭觉县考核招聘体育教师(教练)9人笔试备考题库及答案解析
- 中国昭通中药材国际中心项目可行性研究报告
- 2025中国融通资产管理集团有限公司招聘笔试备考试题(230人)附答案解析
- 2026马年春节新年年货节大集庙会(金马迎春年货大集)活动策划方案
- 心脏搭桥课件
- 2026年安全员之A证考试题库500道附答案【满分必刷】
- 2025年广东省第一次普通高中学业水平合格性考试(春季高考)思想政治试题(含答案详解)
- 人工智能行业-“人工智能+”行动深度解读与产业发展机遇
- 养殖场贷款申请书样本
- (一诊)达州市2026届高三第一次诊断性测试思想政治试题(含标准答案)
- 购车意向金合同范本
- 学堂在线医学英语词汇进阶(首医)作业单元测验答案
评论
0/150
提交评论