版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Root-locusapproachtocontrol-systemsdesign1Inbuildingacontrolsystem,weknowthatpropermodificationoftheplantdynamicsmaybeasimplewaytomeettheperformancespecifications.This,however,maynotbepossibleinmanypracticalsituationsbecausetheplantmaybefixedandnotmodifiable.Inpractice,theroot-locusplotofasystemmayindicatethatthedesiredperformancecannotbeachievedjustbytheadjustmentofgain(orsomeotheradjustableparameter).Infact,insomecases,thesystemmaynotbestableforallvaluesofgain(orotheradjustableparameter).Thenitisnecessarytoreshapetherootlocitomeettheperformancespecifications.Whyweaddcompensatortoaplant?2IntroductionTheperformanceofafeedbacksystemisofprimaryimportanceOurobjectforsuitablecontrolsystemstableanacceptanceresponsetoinputcommandLesssensitivitytosystemparameterchangesMinimumsteady-stateerrorforinputcommandsReducetheeffectofundesirabledisturbancesThesystemthatprovidesanoptimumperformancewithoutanynecessaryadjustmentsisrareindeed.Compromiseamongthespecificationsisneeded.Itisnotsufficienttoadjustasystemparametertoobtainthedesiredperformance.Thedesignofacontrolsystemisconcernedwitharrangementofthesystemstructureandselectionofsuitablecomponentsandparameters3Acompensatorisanadditionalcomponentorcircuitthatisinsertedintoacontrolsystemtocompensateforadeficientperformance
IntroductioncasacadecompensationFeedbackcompensationOutputcompensationInputcompensation4ApproachestoSystemDesignTheperformanceofacontrolsystem:Thetime-domainperformancemeasures:thepeaktimeTP,maximumovershoot,settlingtimeTsandmaximumallowablesteady-stateerroress
Performancewithtimedomaincanbedefinedintermsofthe
desired
locationofthepoles
oftheclosed-looptransferfunctionT(s)Thelocationofthes-planepolescanbespecified.Thuswecanusethe
rootlocus
methodanddetermineasuitablecompensatornetworktransferfunctionsothatresultantrootlocusyieldsthedesiredclosed-looprootconfiguration52Thefrequencydomainmeasures:thepeakofclosed-loopfrequencyresponseMPω,theresonantfrequencyωr,bandwidthωB,phasemarginandmagnitudemargin.Performancesonfrequencydomainarerelatedwithfrequencyresponse.Thedesignisdevelopedintermsofthefrequencyresponseasportrayedonthepolarplane,theBodediagram,ortheNicholschart.WeusuallyprefertoapproachthefrequencyresponsemethodsbyutilizingtheBodediagram.
ApproachestoSystemDesign6Controlsystemdesignbyfrequency-responseapproachTherearebasicallytwoapproachesinthefrequency-domaindesign.OneisthepolarplotapproachandtheotheristheBodediagramapproach.Whenacompensatorisadded,thepolarplotdoesnotretaintheoriginalshape,and,therefore,weneedtodrawanewpolarplot,whichwilltaketimeandisthusinconvenient.Ontheotherhand,aBodediagramofthecompensatorcanbesimplyaddedtotheoriginalBodediagram,andthusplottingthecompleteBodediagramisasimplematter.Also,iftheopen-loopgainisvaried,themagnitudecurveisshiftedupordownwithoutchangingtheslopeofthecurve,andthephasecurveremainsthesame.Fordesignpurposes,therefore,itisbesttoworkwiththeBodediagram.7BasicCharacteristicsofLead,Lag,andLag–LeadCompensationLeadcompensationessentiallyyieldsanappreciableimprovementintransientresponseandasmallchangeinsteady-stateaccuracy.Itmayaccentuatehigh-frequencynoiseeffectsLagcompensation,ontheotherhand,yieldsanappreciableimprovementinsteady-stateaccuracyattheexpenseofincreasingthetransient-responsetime.Lagcompensationwillsuppresstheeffectsofhigh-frequencynoisesignals.Theuseofaleadorlagcompensatorraisestheorderofthesystemby1Lag–leadcompensationcombinesthecharacteristicsofbothleadcompensationandlagcompensation.Theuseofalag–leadcompensatorraisestheorderofthesystemby2.whichmeansthatthesystembecomesmorecomplexanditismoredifficulttocontrolthetransient-responsebehavior8DesignbyRoot-LocusMethodThedesignbytheroot-locusmethodisbasedonreshapingtherootlocusofthesystembyaddingpolesandzerostothesystem’sopen-looptransferfunctionandforcingtherootlocitopassthroughdesiredclosed-looppolesinthesplane.Thecharacteristicoftheroot-locusdesignisitsbeingbasedontheassumptionthattheclosed-loopsystemhasapairofdominantclosed-looppoles.Oncetheeffectsontherootlocusoftheadditionofpolesand/orzerosarefullyunderstood,wecanreadilydeterminethelocationsofthepole(s)andzero(s)ofthecompensatorthatwillreshapetherootlocusasdesired.Therootlociofthesystemarereshapedthroughtheuseofacompensatorsothatapairofdominantclosed-looppolescanbeplacedatthedesiredlocation.9EffectsoftheAdditionofPolesTheadditionofapoletotheopen-looptransferfunctionhastheeffectofpullingtherootlocustotheright,tendingtolowerthesystem’srelativestabilityandtoslowdownthesettlingoftheresponse.(a)Root-locusplotofasingle-polesystem(b)root-locusplotofatwo-polesystem(c)root-locusplotofathree-polesystem10EffectsoftheAdditionofZerosTheadditionofazerototheopen-looptransferfunctionhastheeffectofpullingtherootlocustotheleft,tendingtomakethesystemmorestableandtospeedupthesettlingoftheresponse(a)Root-locusplotofathree-polesystem(b),(c),and(d)root-locusplotsshowingeffectsofadditionofazerotothethree-polesystem11LeadorLagNetworksUsingOperationalAmplifiersOperational-amplifiercircuitThetransferfunctionforthiscircuit1213LeadCompensationTechniquesBasedontheRoot-LocusApproach14156.Onceacompensatorhasbeendesigned,checktoseewhetherallperformancespecificationshavebeenmet.Ifthecompensatedsystemdoesnotmeettheperformancespecifications,thenrepeatthedesignprocedurebyadjustingthecompensatorpoleandzerountilallsuchspecificationsaremet.Ifalargestaticerrorconstantisrequired,cascadealagnetworkoraltertheleadcompensatortoalag–leadcompensator.7.Iftheselecteddominantclosed-looppolesarenotreallydominant,oriftheselecteddominantclosed-looppolesdonotyieldthedesiredresult,itwillbenecessarytomodifythelocationofthepairofsuchselecteddominantclosed-looppoles.16ConsiderthepositioncontrolsystemshowninFigure.Theclosed-looptransferfunctionforthesystemis17(1)(2)18(3)(4)(5)19(6)(7)20(8)(9)212223Unit-stepresponsecurvesofdesignedsystemsandoriginaluncompensatedsystemnum1=[12.28723.876];den1=[15.64616.93323.876];num=[10];den=[1110];t=0:0.05:5;c1=step(num1,den1,t);c=step(num,den,t);plot(t,c1,'-',t,c,'x')grid24Unit-rampresponsecurvesofdesignedsystemsnum1=[12.28723.876];den1=[15.64616.93323.8760];t=0:0.05:5;c1=step(num1,den1,t);plot(t,c1,'-',t,t,'-')grid25Anotherdeignmethodofthephase-lead2627LeadcompensatorusingtherootlocusThecompensatorThegoalofthedesignSettlingtimePercentovershootfora stepinput28Thereforethedampingratioζ>0.32andTs=4.Wecanobtainζ=0.32andωn=3.125.Ifchoosetherootsarehence,ζ=0.45.Designmethod:desiredrootsplacethezeroofthecompensatordirectlybelowthedesiredlocationats=-z=-1calculatethedesiredphaseangledrawnalineatanangleθp
=38°intersectingthedesiredrootlocationandtherealaxis,thepointofintersectionwiththerealaxisiss=-p=-3.6.Therefore,thecompensatoris
29Ifwesetthezeroz=-1,thenpolep=3.6.ThetransferfunctionofthecompensatorThegainK1is8.1whens=-1+j2and|GH(s)Gc(s)|=1.K1=(2.23)^2*3.25/2=8.1Finally,theerrorconstantsofthissystemareevaluated.zerosteady-stateerrorforastepandrampinputsignaltheaccelerationconstantisKa=2.25.Ka=8.1/3.6=2.25Whenwecomparethecompensationnetworkevaluatedbythes-planemethodwiththenetworkobtainedbyusingtheBodediagramapproach,wefindthatthemagnitudesofthepolesandzerosaredifferent.Acomputersimulationofthesystemresultedinanovershootof46%andasettlingtime(towithin2%ofthefinalvalue)of3.8secondsforastepinput.Thesevaluescomparemoderatelywellwiththespecifiedvaluesof35%and4seconds,andtheyjustifytheuseofthedominantrootspecifications.30ElectronicLagCompensatorUsingOperationalAmplifiers31LagCompensationTechniquesBasedontheRoot-LocusApproachCompensationinthiscaseessentiallyconsistsofincreasingtheopen-loopgainwithoutappreciablychangingthetransient-responsecharacteristics.
Therootlocusintheneighborhoodofthedominantclosed-looppolesshouldnotbechangedappreciably,buttheopen-loopgainshouldbeincreasedasmuchasneededToavoidanappreciablechangeintherootloci,theanglecontributionofthelagnetworkshouldbelimitedtoasmallamount,saylessthan5°Thiscanbeaccomplishedifalagcompensatorisputincascadewiththegivenfeed-forwardtransferfunction.Toassurethis,weplace
thepoleandzeroofthelagnetworkrelativelyclosetogetherandneartheoriginofthesplane.Thentheclosed-looppolesofthecompensatedsystemwillbeshiftedonlyslightlyfromtheiroriginallocations.Hence,thetransient-responsecharacteristicswillbechangedonlyslightly.32Ifgainofthelagcompensatorissetequalto1,thealterationinthetransient-responsecharacteristicswillbeverysmall,despitethefactthattheoverallgainof
theopen-looptransferfunctionisincreasedbyafactorofbeta,wherebeta>1.Ifthepoleandzeroareplacedveryclosetotheorigin,thenthevalueofbetacanbemadelarge.3334Theprocedurefordesigninglagcompensators355.Determinethepoleandzeroofthelagcompensatorthatproducethenecessaryincreaseintheparticularstaticerrorconstantwithoutappreciablyalteringtheoriginalrootloci6.Drawanewroot-locusplotforthecompensatedsystem.Locatethedesireddominantclosed-looppolesontherootlocus7.Adjustgainofthecompensatorfromthemagnitudeconditionsothatthedominantclosed-looppoleslieatthedesiredlocation36abProblem37GoalUncompensatedsystem38(1)(2)39Sincethepoleandzeroofthelagcompensatorareplacedclosetogetherandarelocatedveryneartheorigin,thereeffectontheshapeoftheoriginalrootlocihasbeensmall.However,thevalueofthestaticvelocityerrorconstantofthecompensatedsystemisnearly10timesgreaterthanthatoftheuncompensatedsystems.numc=[10.05];denc=[13.0052.0150.010];num=[1.06];den=[1320];rlocus(numc,denc)holdonrlocus(num,den)40(3)(4)41(5)(6)42(7)Remark43numc=[1.02350.0512];denc=[13.0052.0151.03350.0512];num=[1.06];den=[1321.06];t=0:0.1:40;c1=step(numc,denc,t);c2=step(num,den,t);plot(t,c1,'-',t,c2,'.')grid44numc=[1.02350.0512];denc=[13.0052.0151.03350.05120];num=[1.06];den=[1321.060];t=0:0.1:50;c1=step(numc,denc,t);c2=step(num,den,t);plot(t,c1,'-',t,c2,'.',t,t,'--')grid45Simplifiedstepsfordesignofphase-lagnetworkinthes-plane46Example10.6Designofaphase-lagcompensatorThegoalofdesignare:ζ=0.45andKv=20Theuncompensatedrootlocusisaverticallineats=-1andresultsinarootontheζ=0.45lineats=-1±j2.Measuringthegainatthisroot,wehaveK=5.TheuncompensatedsystemKv=2.5.Set|z/p|=20/2.5=8.Thedifferenceoftheanglesfrompandzatthedesiredrootisapproximately1°;s=-1±j2isstillthelocationofthedominantroots.Theopen-loopTF:47Thesummaryforphase-leadandphase-lagcompensatorBothphase-leadandphase-lagcompensatornetworkcanprovidethebetterspecificationtoasystembyalternativemethodsLeadcompensationbasicallyspeedsuptheresponseandincreasesthestabilityofthesesystemLagcompensationimprovesthesteady-stateaccuracyofthesystem,butreducesthespeedoftheresponseIfimprovementsinbothtransientresponseandsteady-stateresponsearedesired,the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河北廊坊大厂回族自治县殡仪馆招聘2人参考考试试题及答案解析
- 2025民航上海医院(瑞金医院古北分院)事业编制招聘62人备考笔试试题及答案解析
- 2026江苏连云港东海县部分事业单位赴高校招聘高层次人才8人备考笔试试题及答案解析
- 2025保山市隆阳区蒲缥镇中心卫生院公开招聘见习人员、乡村医生(9人)参考笔试题库附答案解析
- 2023河北省事业单位考试《公共基础知识》考前训练题
- 网字体版权协议书
- 网点墙打通协议书
- 联合体内部协议书
- 联建协议属于合同
- 联营转直营协议书
- 国家预算实验报告
- 工业园区综合能源智能管理平台建设方案合集
- 附件1:中国联通动环监控系统B接口技术规范(V3.0)
- 正弦函数、余弦函数的图象 说课课件
- 闭合性颅脑损伤病人护理查房
- 《立血康软胶囊研究6400字(论文)》
- GB/T 19216.21-2003在火焰条件下电缆或光缆的线路完整性试验第21部分:试验步骤和要求-额定电压0.6/1.0kV及以下电缆
- 《你看起来好像很好吃》绘本课件
- 囊袋皱缩综合征课件
- 硬件原理图设计规范
- 2023版北京协和医院重症医学科诊疗常规
评论
0/150
提交评论