人教版数学八年级下册期中(二次根式勾股定理平行四边形)复习课课件_第1页
人教版数学八年级下册期中(二次根式勾股定理平行四边形)复习课课件_第2页
人教版数学八年级下册期中(二次根式勾股定理平行四边形)复习课课件_第3页
人教版数学八年级下册期中(二次根式勾股定理平行四边形)复习课课件_第4页
人教版数学八年级下册期中(二次根式勾股定理平行四边形)复习课课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版数学八年级下册期中复习课一、选择题1.若式子

有意义,则a的取值范围是 ()

A.a>1B.a<1C.a≥1D.a≤1C2.如图,A(8,0),C(-2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)D3.如图,在▱ABCD中,对角线AC与BD相交于点O,BD⊥AD,AB=5,BC=3,则以下结论不正确的是 ()A.AD=3B.OB=2C.AC=2D.▱ABCD的面积为6D4.若

=b-3,则 ()A.b>3B.b<3C.b≥3D.b≤3C5.如图,四边形ABCD为菱形,A,B两点的坐标分别是(3,0),(0,),点C,D在坐标轴上,则菱形ABCD的周长等于 ()A.8B.4C.2D.4A6.下列计算正确的是 ()A.B.C.D.D7.菱形和矩形都具有的性质是 ()A.对角线互相平分

B.有一组邻边相等

C.对角线相等

D.对角线互相垂直A8.如图,圆柱体的底面圆周长为8cm,高AB为3cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则爬行的最短路程为 ()A.4cmB.5cmC.cmD.cmB9.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角,且点E,A,B三点共线,AB=4,则阴影部分的面积是 ()A.2B.4C.6D.8D10.如图,在矩形ABCD中,AB=6,过对角线AC的中

点O作EF⊥AC,分别交AB,DC于点E,F,G为

AE的中点,若∠AOG=30°,则OG的长为 ()A.2B.2C.D.3B二、填空题1.计算

的结果等于_____.2.已知三角形的三边为2,2,2,则这个三角形是 __________三角形.3.如图,在平行四边形ABCD中,DE平分∠ADC,

AD=5,BE=2,则平行四边形ABCD的周长是____3等腰直角164.计算:________.5.已知a+b=2+1,ab=

,则(a+1)(b+1)=_______.6.如图,在菱形ABCD中,∠ABC=120°,对角线

BD=3,则菱形ABCD的周长等于_____.7.如图,在平行四边形ABCD中,AE⊥BC于点E,

AF⊥CD于点F,∠EAF=45°,且AE+AF=3,

则平行四边形ABCD的周长是_____.12128.如图,在矩形ABCD中,AB=1,以点A为圆心,对

角线AC的长为半径作弧与数轴负半轴交于一点,则

该点表示的数为________.三、解答题1.计算:解:原式=2.已知a=2+

,b=2-

,求下列各式的值.(1)a2-b2;

=4×2=(2+

+2-)(2+

-2+)=8.

解:(1)原式=(a+b)(a-b)(2)(a-1)(b-1).=(1+)(1-)解:原式=(2+

-1)(2-

-1)=1-3=-2.3.已知a,b,c满足

,请

判断以a,b,c为边长的三角形是否是直角三角形,

并说明理由.

∵(2)2+()2=52,

依题意,得a-5=0,b-2=0,c-

=0,

解得a=5,b=2,c=

,∴以a,b,c为边长的三角形是直角三角形.解:以a,b,c为边长的三角形是直角三角形,理由如下:4.如图,在▱ABCD中,AE⊥BC于点E,点F在边AD

上,BE=DF.求证:四边形AECF是矩形.

∴四边形AECF是矩形.∴∠AEC=90°.∵AE⊥BC,∴四边形AECF为平行四边形.∴AD-DF=BC-BE,即AF=EC.∵BE=DF,∴AD=BC,AD∥BC.证明:∵四边形ABCD是平行四边形,5.如图,在△ABC中,∠ABC=45°,∠ACB=60°,

且AC=4,求AB的长和△ABC的面积.

∴BD=AD=2,AB=

∴△ABD为等腰直角三角形.∵∠B=45°,∠ADB=90°,在Rt△ABD中,∴AD=∴DC=

AC=2.∵∠ADC=90°,∠ACB=60°,AC=4,解:如图,过点A作AD⊥BC于点D,∴S△ABC=

BC·AD=(BD+DC)·AD=6+2.=

×(2+2)×26.如图,▱ABCD对角线AC,BD相交于点O,过点D

作DE∥AC且DE=OC.连接CE,OE,AE,AE交

OD于点F,OE=CD.

求证:▱ABCD是菱形;

∴AC⊥BD.∴▱ABCD是菱形.∴▱OCED是矩形.∴∠COD=90°.∵OE=CD,∴四边形OCED是平行四边形.证明:∵DE∥AC,DE=OC,(2)若AB=4,∠ABC=60°,求AE的长.∴OA=OC=2.∴AC=AB=4.∴△ABC是等边三角形.∵∠ABC=60°,∴OA=OC,CD=AB=BC=4,AC⊥BD.解:∵四边形ABCD是菱形,在Rt△OCD中,由勾股定理,∴CE=OD=2,∠OCE=90°.即AE的长为2.∴AE=由(1)可知,四边形OCED是矩形,得OD=7.如图,将矩形ABCD沿直线AC对折,将点B折到点E

处,AE交CD于点F.(1)求证:△ACF是等腰三角形;

证明:∵将矩形ABCD沿直线AC对折,将点B折到点E处,∴AF=CF,则△ACF为等腰三角形.∴∠DCA=∠BAC,∠EAC=∠DCA.∴∠EAC=∠BAC.又∵DC∥AB,(2)若CD=16cm,AD=8cm,求CF的长.∴CF=16-6=10(cm).AF2=AD2+DF2,即(16-x)2=82+x2,解得x=6,解:设DF=xcm,则AF=CF=CD-DF=(16-x)(cm),

在Rt△ADF中,根据勾股定理得8.如图,在矩形纸片ABCD中,CD=3,AD=6,将矩形沿EF折叠,折痕分别交AD,BC于点E,F,点C的对应点为C′,点D的对应点为

D′.(1)观察发现:如图1,连接C′E,若BF=1,求C′E的长;∴C′E的长为.∴C′E=∴C′H=C′F-HF=5-3=2,HE=C′D′=3.由翻折可得C′D′=CD=3,FC′=FC=5,∴FC=BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论