




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArtificialIntelligenceandProductivityinEurope
FlorianMisch,BenPark,CarloPizzinelliandGalenSher
WP/25/67
IMFWorkingPapersdescriberesearchin
progressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.
TheviewsexpressedinIMFWorkingPapersare
thoseoftheauthor(s)anddonotnecessarily
representtheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
2025
APR
NATn
·
ARY
*Correspondingauthor.
**WethankSimonBunel,EraDabla-Norris,RomainDuvalandDavidKollforexcellentcomments.MahikaGandhiprovidedexcellentresearchassistance.
©2025InternationalMonetaryFundWP/25/67
IMFWorkingPaper
EuropeanDepartment
ArtificialIntelligenceandProductivityinEurope
PreparedbyFlorianMisch*,BenPark,CarloPizzinelliandGalenSher**
AuthorizedfordistributionbyStephanDanningerandKristinaKostial
Month2025
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicit
commentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseofthe
author(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:ThediscussiononArtificialIntelligence(AI)oftencentersarounditsimpactonproductivity,butmacroeconomicevidenceforEuroperemainsscarce.UsingtheAcemoglu(2024)approachwesimulatethemedium-termimpactofAIadoptionontotalfactorproductivityfor31Europeancountries.Wecompilemanyscenariosbypoolingevidenceonwhichtaskswillbeautomatableinthenearterm,usingreduced-form
regressionstopredictAIadoptionacrossEurope,andconsideringrelevantregulationthatrestrictsAIuse
heterogeneouslyacrosstasks,occupationsandsectors.Wefindthatthemedium-termproductivitygainsforEuropeasawholearelikelytobemodest,ataround1percentcumulativelyoverfiveyears.While
economciallystillmoderate,thesegainsarestilllargerthanestimatesbyAcemoglu(2024)fortheUS.Theyvarywidelyacrossscenariosandcountriesandaresustantiallylargerincountrieswithhigherincomes.
Furthermore,weshowthatnationalandEUregulationsaroundoccupation-levelrequirements,AIsafety,anddataprivacycombinedcouldreduceEurope’sproductivitygainsbyover30percentifAIexposurewere50
percentlowerintasks,occupationsandsectorsaffectedbyregulation.
RECOMMENDEDCITATION:[Misch,F.,Park,B.,Pizzinelli,C.andSher,G.(2024).ArtificialIntelligenceandProductivityinEurope.IMFWorkingPaperWP/25/67.
JELClassificationNumbers:
E24,J24,O30,O47
Keywords:
ArtificialIntelligence;Productivity;Technology;Regulation
Author’sE-MailAddress:
FMisch@;
HPark2@;
CPizzinelli@;
GSher@
WORKINGPAPERS
ArtificialIntelligenceandProductivityinEurope
PreparedbyFlorianMisch
1,
BenPark,CarloPizzinelliandGalenShe
r2
1Correspondingauthor.
2MahikaGandhiprovidedexcellentresearchassistance.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND2
Contents
1.Introduction 3
2.StylizedFacts 6
3.Methodology 6
4.Results 8
4.1VariationinMedium-termProductivityGains 8
4.2PreferredScenario 12
4.3TheRoleofRegulation 15
5.ConclusionsandPolicyImplications 16
Appendix1:SampleandCountry-SpecificData 18
Appendix2:AIExposureofTasksandOccupations 19
Appendix3:AIAdoptionRate 22
Appendix4:LaborCostSavingsfromAI 28
Appendix5:NationalOccupationRegulation 29
Appendix6:EUAIAct 30
Appendix7:DataPrivacyLaws 31
References 32
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND3
1.Introduction
Artificialintelligence(AI)isoftenseenasageneral-purposetechnologythathasthepotentialtotransformtheeconomyandspurbroad-basedeconomicgrowth,akintothearrivalofelectricityandpersonalcomputers.
Muchofthedebateonitslikelyimpactthusfocusesonitseffectonproductivity.InEurope,thisquestionis
especiallytopicalgivenlacklusterproductivitygrowthoverrecentdecades,whichresultedinalarge
productivitygapvis-à-vistheUS(IMF,2024).Moreover,thereisawidespreadviewthattheregionisfallingbehindtheUSandChinainAIdevelopmentandadoption,notleastbecauseofitsmorestringentregulatoryenvironment(e.g.,TheEconomist,2023).Theobjectiveofthispaperistoprovideestimatesofthesizeof
effectsofAIontotalfactorproductivity(TFP)acrossEuropeancountriesoverthemediumtermandexamineanyimpedingeffectsofregulationinEurope.
MicroeconomicstudiessuggestlargeproductivitygainsfromdifferenttypesofAIforspecificoccupations.
Theseestimates,whichinmostcasesarebasedonrandomizedtrialswherethetreatmentgroupisgiven
accesstoAItools,rangefrom14%forlow-skilledtaxidriverstoover50%forsoftwareengineers;see
Appendix4forasummary.Firm-levelstudiesontheeffectsofadoptionofAItechnologiesotherthan
generativeAIfindsmallerbutstillsignificantproductivitygains(seeComunaleandManera,2024,and
Filippuccietal.,2024aforsurveys).AseparatestrandoftheliteraturelooksattheimpactofAIonemployment.Cazzanigaetal.(2024),forinstance,notethatalargeshareofjobsgloballyislikelytobeaffectedbyAI,
particularlyinadvancedeconomies,andthatAIwillsubstituteratherthancomplementhumanlaborinmanyjobs.UsingdatafromtheUS,Bonfigliolietal.(2025)andHuang(2024)showthathigherAIadoptionis
associatedwithfallsintheemployment-to-populationratios.AseparatestrandoftheliteratureexaminesmacroeconomicpoliciestobroadenthegainsfromAI;seeBrolloetal.(2024).
Theextenttowhichthesemicro-levelproductivitygainsandpossibleemploymenteffectsareassociatedwithaggregateproductivitygainsandgrowth,however,remainsunclear.Studiesexaminingthemedium-term
macroeconomiceffectofAIshowasubstantiallywiderrangeofestimates.McKinsey(2023)andGoldman
Sachs(Hatziusetal.,2023)envisioncumulativeGDPgainsofabove35percentforadvancedeconomiesand7percentgloballyovera10-yearperiod,respectively.Commissiondel’IntelligenceArtificielle(2024)infers
potentialgrowthimpactsfromAIofupto1.3annuallybydrawingparallelstotheeffectsofelectricityand
InformationandCommunicationtechnologies.Similarly,IMF(2024)andCazzanigaetal.(2024)estimate
annualgrowthimpactsofupto0.8percentagepointsbasedonlaborreallocationandchangesinthecapitalsharecomparabletothoseobservedforautomationinthepast.
Bycontrast,Acemoglu(2024)doesnottakeintoaccountanypotentiallonger-termtransformationaleffectsofAIandthereforeestimatesmuchmoremodestTFPgainsoflessthan0.7percentcumulativelyover10yearswhichhereferstoas‘mediumterm’.Heusesarigorousframeworkthatquantifiesthegainsbottom-upusingmeasuresoftheAIexposureofindividualtasksforeachoccupation.AghionandBunel(2024)showthatusingalternativeassumptionswithinAcemoglu’s(2024)frameworkcan10-foldtheestimatedproductivitygainsfor
theUS.
EvidenceconsideringEurope-specificfactorsandcross-countryheterogeneitywithintheregionremains
relativelyscarce.Bergeaud(2024)simulatesproductivitygainsfromAIfortheeuroareausingtheAcemoglu(2024)framework,combiningsomeoftheoriginalpaper’sparametervalueswithownassumptionsand
estimatestogenerateafewalternativescenarios.Hefindscumulativeproductivitygainsof2.9percentforthe
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND4
euroareainhiscentralscenario,whilehiscountry-specificresultsrangefromaround1.5inIrelandto3.3in
Belgium.Filippuccietal.(2024b)extendtheAcemoglu(2024)frameworkbymoreexplicitlymodellingsectoralspilloversandpresenttheproductivitygainsforallG7countrieswhileassumingdifferentadoptionrates.TheestimatedgainsarealsosignificantlyhigherthantheAcemoglu(2024)resultsformostcountriesand
scenarios.
Ourstudyisbroaderinscopeintermsofcountrycoverage,numberofscenariosandconsiderationofthe
effectsofregulation,andituseseconometrically-groundedparameterestimates.Weinvestigatecross-countryvariationfor31EuropeancountriesbothintermsofthemagnitudeandtheuncertaintyoftheproductivitygainsmoresystematicallybyallowingtheratesofAIadoptiontovaryacrosscountriesaccordingtotheireconomic
characteristics.Tothisend,wealsouseAcemoglu’s(2024)frameworktoestimatethemedium-term
productivitygainsfromAIinEurope(whichweinterprettobe5years,giventhemodelcharacteristicsandourassumptions)
.1
First,wequantifytheuncertaintyaroundtheimpactofAIonTFP.Ratherthanmakingourownassumptions,wecombineacomprehensivesetoftheavailableestimatesofAIexposureofindividualtasks,delivering44
scenarios.Foreachscenario,wecalibrateestimatesofAIadoptionbySvanbergetal.(2024),asusedin
Acemoglu(2024),tospecificcountriesandsectorsbasedonregressionevidenceofthedriversofAIadoptioninEurope.WagelevelsturnouttobethemaindriverofAIadoption,ratherthancapitalcosts,industry
concentration,digitalization,orhumancapital.Thisallowsustotakeintoaccounthowdifferencesinwage
levelsandothersectoralandcountry-levelfactorsaffectAIadoptionandshapecross-countryvariationoftheproductivitygains.
Second,weexaminetheroleofregulationinreducingproductivitygainsofAIwhichisoneareaofpolicythatisoftendiscussedwhenitcomestoAI;seeforexampleBradford(2024)forabroaderdiscussion.Survey
evidencefromGermanysuggeststhatwhilefirmsseemanybarrierstoAIadoption,regulationisseenasmostimportant(Wintergerst,2024).Tothisend,weconsiderregulationwhichcouldplausiblyhavelargeeffectson
AIadoption:licensingandtrainingrequirementsforspecificoccupationsatthenationallevel,dataprivacylaws,andtheEUAIAct
.2
Wethenidentifythetasks,occupationsandsectorswherethisregulationcouldundermineAIadoptionandassumethatregulationhalvesAIcapabilities,strikingareasonablemiddlegroundbetween
assumingthatregulationcompletelypreventsAIuseandthatregulationhasnoimpact.
Weshowthatinourpreferredscenario,whichisbasedonwhatwethinkarethemostplausibleassumptionsonAIoccupationalexposureandadoptionratesinEuropeancountries,theEurope-wideeffectsaremodestataround1.1percentcumulativelyoverthemediumterm,whichexceedsAcemoglu’sestimatesfortheUSby
almost60percent.ThesedifferencesaredrivenalmostentirelybymoreoptimisticassumptionsofAI
capabilitieswhichwethinkarejustifiedinlightofarecentrefereedpublicationwhichweexplainbelow.
However,thereissignificantheterogeneityacrosscountries.EstimatedTFPgainsinhigher-incomecountriestendtobemuchlargerthanthoseinlower-incomeeconomiesinlinewithfindingsbyCeruttietal.(2025),due
1IncontrasttoAcemoglu(2024)whoconsidersa10-yearperiod,weassumethatthesimulatedproductivitygainsrefertoa5-yearhorizonfortworeasons.First,theframeworkbyAcemoglu(2024)doesnotcaptureanylarge-scaletransformationaleffects
whichwethinkcouldindeedariseoverperiodsexceeding5years.Second,weassumethatAIcapabilitiesandtheAIadoptionrate(i.e.,theproportionoftasksforwhichitwillbeprofitabletouseAI)willremainconstantovertime.Over10years,botharemorelikelytochange.
2TheEUAIActisakeyAIsafetylawwhichcapsthecapacityofAIsystemsandincreasesthecostofusingAIinadefinedlistofhigh-risksystems.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND5
toboththeirlargershareofvalueaddedinindustriesthathavegreaterAIexposure(e.g.,financialservices)andtheirhigherwagelevels—whichprovidegreaterincentivesforlabor-savingorlabor-augmentingAI
adoption.
Moreover,inhigherincome-countries,therearemuchlargerupsiderisksfromAI.Forexample,inourpreferredscenario,thegainsinLuxembourgcouldbe2percentcumulatively,almosttwicetheEuropeanaverage,and
morethan4timeslargerthanthoseinRomania.ThisisduetothecompositionoftheLuxembourgish
economy,withmorevalueaddedinsectorslikefinancialserviceswithhigherAIexposure,anddueto
Luxembourg’shigherwages,whichgiveemployersthereagreaterincentivetoadoptAI.Inaddition,
productivitygainsinLuxembourgcouldbemorethantwiceashighifAIturnsouttobemorecapablethaninthe‘preferred’scenario,pointingtolargerupsiderisksaswell.
Wealsofindthatthecombinedadverseeffectsofnationaloccupation-levelregulation,theEUAIActanddataprivacylawsonproductivitycouldbesignificant,withtheformertwohavingthelargesteffects.Occupational
restrictionsareoftenoverlookedindebatesonAIbutcouldsubstantiallyreducetheproductivitygainsfromAI.Bycontrast,dataprivacylawswidelyaffectsomeindustrieswithhighAIexposure,suchastheITandfinancialservicessectors,buttheirproductivity-inhibitingeffectissomewhatsmaller.
Ourresultscaninformongoingpolicydebates.Ontheonehand,theysuggestthatoverthemediumterm,AIisnotasilverbullettosignificantlyboostsluggishproductivitygrowthinEurope,ortoclosetheproductivitygaptotheUnitedStates.Moreover,AIcouldslowtherateofincomeconvergenceamongEuropeancountries
becausethegainsfromAItendtobelargerinmoreadvancedeconomies.Ontheotherhand,ourresultshelpinformthepotentialtrade-offsbetweenthebenefitsofregulationsincludingrelatedtoprivacyandsafety,andmaximizingtheproductivitygainsfromAI,whilenotingthatourstudyisnotacomprehensivecost-benefit
analysisoftheseregulations.
Thispaperisorganizedasfollows.Section2presentsstylizedfactsonthediffusionandadoptionofAIto
motivatetheanalysisandthefocusonmedium-termeffects.Section3providesasummaryoftheAcemoglu
(2024)modelanddiscusseshowwecalibratesomeofitskeyparameterstotheEuropeancontext,consideringarangeofalternativescenarios.Section4presentstheresultsandtheanalysisofregulations.Section5
concludes.
INTERNATIONALMONETARYFUND6
2.StylizedFacts
Figure1.SpreadofPastInnovations
(Yearstoreach100millionusers/units)
100
M
M
M
M
M
M
M
M
M
M
M
0135791113151719212325···80YearstoReach100MillionUsers/Unit
NumberofUsers
90
80
70
60
50
40
30
20
10
0
GenAI
TV
Telephone
InternetCableTV
ComputersCellphone
Source:CHATdatabase;IMFstaffcomputation.
Note:TheGenAIandInternetlinereflectstheusercount.ThefiguresforComputers,TV,andCellphonerepresentthenumberofunits.CableTVandTelephoneindicatethenumberof
connections.
ThefastspeedofdiffusionofgenerativeAI(genAI),asubsetofthebroadsetoftechnologiesthatfall
underthedefinitionofAI,overthelasttwoyears
explainsinparttherecentinterestinandpublic
debatesontheeffectsofAImorebroadly.
Comparedtopastinnovations,ittookonlyafew
monthsforgenAItoreach100millionusers
(measuredbytheuserbaseofOpenAI’sChatGPTwhichwasthefirstwidelyavailableandaccessiblegenAIapplication).Bycontrast,ittookyears(and
sometimesdecades)forothergeneral-purpose
technologiestoreachthesamenumberofusers.
Eventhoughthesedifferencesmaybemainly
drivenbytheverylowaccesscostofgenAI
technologiesthroughsmartphonesandpersonal
computers,thishistoricallyunprecedentedspeedofadoptionpointstothepotentialforAItobe
applicabletoawiderangeoftasks.However,aswediscussbelow,thesheernumberofindividualusersneitherimpliesthatAIisbeingemployedtoawide
rangeoftasksnorisitsynonymousforbroaderAIadoptionbyfirms.
3.Methodology
TosimulatetheeffectsofAIonproductivity,thispaperusesthemodelfromAcemoglu(2024),whichinturnisbasedonAcemogluandRestrepo(2018,2019,2022).Inthemodel,theproductionofauniquefinalgood
requiresafixedsetoftaskstobeperformed,andinturn,thesetaskscanbeproducedwitheithercapitalor
labor.Thisframeworkserveswelltoexaminethemedium-termeffectsofAI,interpretedasthegrowthinoutputandTFPoriginatingfromsmallchangesinproductivityandinthemixoflaborandcapitalinputs,butwithout
fundamentallong-runchangesinthestructureoftheeconomy(i.e.,itssectoralcompositionandtasks).
Acemoglu(2024)includestwochannelsforAI-basedproductivitygains:automationandtaskcomplementarity.Theformerentailsasubstitutionofworkersintheperformanceofindividualtaskswithinanoccupation,
decreasingtheoverallneedforhumanlabor.Thelatterreferstopartialautomationoftaskssothatthemarginallaborproductivityincreasesincomplementarytasksperformedbyhumans.
Acemoglu(2024)thenappliesHulten’stheorem(Hulten,1978),whichshowshowmicro-level,non-
transformationalproductivityimprovementsinindividualoccupationstranslateintomacrochangesand
aggregatedproductivitygrowthincompetitiveeconomieswithconstantreturnstoscale.SinceAcemoglu’s
focusisonsmallchangesintechnologyandthecompetitiveequilibriumisefficient,theimpactofall
reallocationsoffactorsacrosstasksandindirecteffectsviapricesareofsecondaryorderandthereforesmallenoughtobeignoredincomputingtheproductivityandGDPgainsduetoAI.Thisalsoimpliesthatthemodel
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND7
isnotsuitableforestimatinganypotentiallylargetransformationalandlonger-termeffects,suchasthecreationofnewindustriesoranaccelerationintherateofscientificdiscoveries.
EstimatingtheproductivitygainsofAIadoptionintheAcemoglu(2024)modelamountstocalibratingthreekeyparameters.ThefirstrequiredinputconsistsofameasureoftheexposuretoAIofdifferentoccupations,
essentiallyreflectingassumptionsaboutAIcapabilitiesandthepotentialscopeofAIapplications.Importantly,forthepurposeofestimatingproductivitygains,exposurecanrefertobothautomationandtask
complementarities
.3
Usingaversionofthetask-basedoccupationalexposuremeasureconstructedby
Eloundouetal.(2024),Acemoglu(2024)calculatesthatthewagebill-weightedshareofexposedtasksinthe
U.S.economyis19.9percent,meaningthatAIhasthecapabilityofperformingaround20percentoftasksin
theU.S.economy(whenwagebillweightsareusedtoproxytherelativeimportanceoftasksandoccupations).
ThesecondparameterofinterestistheAIadoptionrate,i.e.,theshareofAI-exposedtaskswherethebenefitsofusingAIexceedthecosts,thusmakingAIadoptionprofitable.Intuitively,theremaybetasksthatAIcan
performbutwhereitsapplicationmaybetoocostlyrelativetothepriceoflaborinthesamejob.Hence,therawexposuremeasureofanoccupationshouldbecombinedwithanestimateoftheeconomicfeasibilityof
adoption.Acemoglu(2024)drawsfromthecostingestimatesofSvanbergetal.(2024)toassumethatthebenefitsofusingAIexceedthecostsfor23percentofAI-exposedtasks.
Finally,translatingtheapplicationofAIintoproductivitygainsrequiresanestimateofthesavingsintermsof
laborcoststhatAIprovideswhenproducingaunitofoutput.Acemoglu(2024)usesanaverageofthree
microeconomicproductivityestimatestocalibratetheassumptionthattasksautomatedbyAIreducelabor
costsby27%.Theselaborcostsavingstranslateinto15%total(laborandcapital)costsavings,giventhat
laborcostsaccountfor53percentofoutput.Multiplyingthesethreekeyparameters(19.9%,23%,and15%),
Acemoglu(2024)estimatesa0.71%cumulativemedium-termincreaseintotalfactorproductivityfortheUS.IncontrasttoAcemoglu(2024)whoconsidersthemediumtermtobe10years,weassumethatthecumulative
medium-termgainsariseover5years.
Weapplythesamemethodologyto31Europeancountries(seeAppendix1forlistofcountries).Foreach
country,weobtainthefirstkeyparameter—theshareofAI-exposedtasksinindustry-specificvalueadded—byweightingoccupation-levelexposuresbyeachoccupation’swagebillwithinanindustry(seeAppendix2fortheAIexposureestimatesfromtheliteratureweuse).Toobtainthesecondkeyparameter—theAIadoptionrate—weestimatethehistoricalrelationshipbetweenAIadoptionandcountries’andsectors’economic
characteristics(e.g.,laborandcapitalcosts)inEurope.Thisgivestheshareoftasksineachcountry-industry
pairforwhichitisprofitabletoapplyAI(seeAppendix3).Wecalibratethethirdkeyparameter(costsavings)inthesamewayasAcemoglu(2024).Finally,wecalculateproductivitygainastheproductofthesethreekey
parameters(seeAppendix1fordetailsondatausedforweightingandlaborshares).
3Thedistinctionbetweenautomationandcomplementarity,however,wouldberelevantforexaminingtheimpactofadoptiononemploymentandlaborproductivity,whichweleaveforfutureresearch.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND8
4.Results
4.1VariationinMedium-termProductivityGains
Wepresenttheresultsinseveralstages.First,wecompareproductivitygainsinEuropetotheestimatesby
Acemoglu(2024)fortheUS.Second,weshowhowalternativeassumptionsofAIcapabilitiesandAIadoptionaffecttheproductivitygainsacrossthecountriesinoursample.Finally,wecombineallassumptionstoarrivetoaplausiblerangeofestimatesforeachcountry.
First,weapplythesamemethodologyasinAcemoglu(2024)toEuropeinordertocompareourestimateswiththeonesforAcemoglu(2024)fortheUS.Inparticular,wecalculatetheproductivitygainsforEuropean
countriesandEuropeasawhole,usingthesamemeasureofoccupation-levelAIexposure,AIadoptionrate,
andlaborcostsavingsfromAIasintheoriginalAcemoglu(2024)paper.Thisparametrization,henceforth
referredtoasthe‘Acemoglu(2024)baseline’,allowsustoexaminehowdifferencesinthesectoralcompositionandwagestructuretranslateintodifferencesintheproductivitygainsfromAIbetweentheUSandEuropean
countries,giventhattherearenootherdifferencesbetweenAcemoglu’sresultandourresultsforEurope.
Figure2showsthat,basedondifferencesinthesectoralcomposition,theaverageproductivitygainsinEuropearesomewhatlargerthanintheUS,butnotbymuch:theyamounttocloseto0.8percentinEurope,
cumulativelyoverthemediumterm,comparedtoaround0.7inAcemoglu(2024)fortheUS.However,thereissubstantialcross-countryvariation,rangingfromaround0.5percentinRomaniatocloseto1percentin
Luxembourg.Broadly,higher-incomecountrieshavelargergains,aresultdrivenbythehigherprevalenceofwhite-collarservicesincludingforinstancefinancialservices,whichtendtobemoreexposedtoAI.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND9
Figure2.ProductivitygainsinEuropeandtheUScompared
Sources:Eurostat,EULFS,EUSILC,andIMFstaffcalculations.
Note:TheblackandredlinesrepresenttheaverageTFPgainforthe31EuropeancountriesinoursampleandfortheUSasestimatedbyAcemoglu(2024),respectively.
Second,wequantifytheuncertaintyaroundtheAcemoglu(2024)baselineresultspresentedinFigure2usingacomprehensivesetofalternativescenariosaboutAIcapabilities(AItask-levelexposuremeasures)
.4
WethusrepeattheexerciseconsideringvariousalternativeestimatesonAIexposure.Appendix2providesalistofAI
exposureestimatesandbriefdescriptionsoftheirmainmethodologicaldifferences.Forinstance,some
computeexposureforspecifictasksandthenconsidereachoccupationasabundleoftasks(Eloundouetal.,2024,Gmyreketal.,2023,Webb,2019),whileothersfocusontheoverlapbetweenAIapplicationandhumanskills(Feltenetal.,2021).Beyondthemechanicalmeaningoftestingthesensitivityoftheresultstothese
assumptions,exploringalternativemeasuresofexposurethusalsoreflectstheconsiderableuncertaintyaroundhowindividualtasksandoccupationswillbeaffectedbyAI.Figure3showsthatwhilemoreconservative
assumptionsmute
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版离婚财产分割协议书范本:离婚诉讼中财产分割的证据收集与运用技巧
- 2025版驾校场地租赁及教学设备更新协议
- 2025版超市店铺转让协议及供应链整合与物流配送合同
- 二零二五年度房屋买卖与房地产投资分析服务合同
- 2025版足浴店全方位承包合作协议
- 二零二五年度绿色建筑工程炮工安全责任书
- 2025版古建筑修复与设计合同标准
- 二零二五年度垃圾场智能监控系统施工合同
- 二零二五年度景区景点保洁与维护协议
- 2025年度智能设备研发劳务外包个人服务协议范本
- 2025广西公需科目试题及答案
- 2026届高考语文复习:议论文并列式分论点拟写+课件
- 2025年行政执法考试题库及答案
- 2025年营养师(初级)专业能力模拟试题
- 广东省博物馆新馆开馆策划方案暨广东历代绘画展览开幕典礼方案
- 政委考试试题及答案
- 专利代理师岗位面试问题及答案
- DB45∕T 2954-2024 农田建设项目概预算定额及其编制规程
- 重症医学科管理制度
- DB43-T 2446-2022 架桥机安全状况评估
- 2025榆林能源集团有限公司招聘工作人员(473人)笔试参考题库附带答案详解析
评论
0/150
提交评论