




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀区北京市第十九中学2024−2025学年高一下学期3月月考数学试题一、单选题(本大题共8小题)1.已知角的终边过点,则(
)A. B. C. D.2.若角满足,则角是(
)A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.若是三角形的一个内角,且,则等于(
)A. B.或 C. D.或4.单位圆上一点从出发,逆时针方向运动弧长到达点,则的坐标为(
)A. B. C. D.5.要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位6.函数的单调递增区间为(
)A. B.C. D.7.将函数的图象向右平移个单位长度,得到函数的图象,且,则的一个可能值为A. B. C. D.8.2020年3月14日是全球首个国际圆周率日(Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是(
).A. B.C. D.二、填空题(本大题共5小题)9.亲爱的同学,本场考试需要1小时,则在本场考试中,钟表的时针转过的弧度数为.10..11.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则.12.若函数为偶函数,则的一个值是.13.设函数的图象关于直线对称,它的周期为,则下列说法正确的是.(填写序号)①的图象过点;②在上单调递减;③的一个对称中心是;④将的图象向右平移个单位长度得到函数的图象.三、解答题(本大题共3小题)14.已知函数.请用五点作图法做出函数在一个周期内的图象,并回答以下问题:列表
画图(1)最小正周期为__________,零点为__________;(2)单调递增区间为__________,单调递减区间为__________;(3)值域为__________,当__________时,__________;当__________时,__________;(4)函数图象的对称轴为____________________,对称中心为____________________.15.如图为函数的部分图象.(1)求函数的解析式;(2)求函数在区间上的最大值和最小值;(3)将函数的图象向右平移个单位长度,得到函数的图象,若方程在上有两个不相等的实数根,求实数的取值范围.16.已知函数,且图象的相邻两条对称轴之间的距离是,再从如下的条件Ⅰ、条件Ⅱ、条件Ⅲ中选择两个作为一组已知条件.(1)确定的解析式;(2)求单调增区间;(3)若图象的对称轴只有一个落在区间上,求a的取值范围.条件Ⅰ:的最小值为;条件Ⅱ:图象的一个对称中心为;条件Ⅲ:的图象经过点.
参考答案1.【答案】C【详解】解:因为角的终边过点,所以,,所以;故选C.2.【答案】B【详解】为第二,三象限角或者轴负半轴上的角;又为第二,四象限角所以为第二象限角.故选B.3.【答案】B【详解】由是三角形的一个内角,得,而,所以或.故选B.4.【答案】D【详解】点从出发,沿单位圆逆时针方向运动弧长到达点,所以,所以,其中,,即点的坐标为:.故选D.5.【答案】B【详解】试题分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选B.考点:函数y=Asin(ωx+φ)的图象变换.6.【答案】C【详解】根据正切函数性质可知,当时,函数单调递增,即,故选C.7.【答案】A【详解】由题意可得,,又,所以为奇函数,因此,故,所以,所以可以取.故选A.8.【答案】A【详解】单位圆内接正边形的每条边所对应的圆心角为,每条边长为,所以,单位圆的内接正边形的周长为,单位圆的外切正边形的每条边长为,其周长为,,则.故选A.9.【答案】/【详解】钟表的时针为顺时针旋转,所以所求角的弧度数为.10.【答案】1【详解】.11.【答案】【详解】试题分析:因为角与角的终边关于轴对称,所以,所以.【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.12.【答案】(答案不唯一)【详解】函数为偶函数,则,故的一个值可以是.13.【答案】③【详解】函数的最小正周期是,所以,则,所以,又的图象关于直线对称,所以对称轴为,代入可得,解得,因为,所以当时,,则,对于①,当时,,的图象不过点,所以①不正确;对于②,的单调递减区间为,解得,当时,,又因为,则在上不是减函数,所以②错误;对于③,由,解得,当时,,所以的一个对称中心是;所以③正确;对于④,因为,将向右平移个单位长度,可得,所以不能得到的图象,所以④错误.综上可知,正确的为③.14.【答案】(1);(2),.(3);;;,;(4),,【详解】(1)解:由函数,列表如下:函数在一个周期内的图象,如图所示,由的图象可得,函数的最小正周期为;函数的零点为.(2)解:令,解得,所以函数的单调递增区间为;令,解得,所以函数的单调递增区间为,故答案为:单调递增区间为,递减区间为.(3)解:由函数的图象,可得函数的值域为,当时,;当时,;(4)解:令,解得,所以的对称轴的方程为;令,解得,所以的对称中心为,15.【答案】(1)(2)最大值为,最小值为(3)【详解】(1)由图知,五点作图法的第二个点和第三个点分别为,则,解得,所以函数的解析式为.(2)由(1)知,令,所以,故函数在区间上的最大值为,最小值为.(3)由题知,又在上有两个不相等的实数根,令,则,其图象如图,又时,,所以由图知,.16.【答案】(1)(2);(3).【详解】(1)由函数图象上相邻两条对称轴间的距离为,得其最小正周期,解得,此时,选条件Ⅰ、Ⅱ;由,得,由图象的一个对称中心为,得,而,则,,所以.选条件Ⅰ、Ⅲ:由,得,由函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 砂场承包协议书范本
- 现场查勘协议书范本
- 离婚财产双方协议书范本
- 认识刀库与机械手的结构
- 体育器材产品安全性能测试方法标准考核试卷
- 医院消毒工作与患者安全的关系分析考核试卷
- 纺织材料变形过程中的力学损伤机理分析考核试卷
- 广东省汕头市澄海区2024-2025学年七年级下学期7月期末考试英语试题(含答案)
- 2025年山塘景区土地租赁与旅游设施建设投资合同
- 2025年企业办公设备智能运维及维护服务外包协议
- 水泵保养操作规程
- 2025年国家粮食和物资储备局科学研究院招聘1人历年自考难、易点模拟试卷(共500题附带答案详解)
- 2024年江苏省扬州市中考数学试卷(附答案)
- 民法典继承篇课件
- 《铁路技术管理规程》(普速铁路部分)
- 喷漆车间火灾应急预案
- 路灯设施维修工程施工组织设计方案
- T-CTSS 3-2024 茶艺职业技能竞赛技术规程
- 领导到单位调研流程安排
- 瑞幸咖啡与星巴克咖啡商业模式比较研究
- 统编版语文二年级下册-25黄帝的传说-教学课件多篇
评论
0/150
提交评论