江西省赣州市崇义中学2024-2025学年高三下学期联考(二)数学试题含解析_第1页
江西省赣州市崇义中学2024-2025学年高三下学期联考(二)数学试题含解析_第2页
江西省赣州市崇义中学2024-2025学年高三下学期联考(二)数学试题含解析_第3页
江西省赣州市崇义中学2024-2025学年高三下学期联考(二)数学试题含解析_第4页
江西省赣州市崇义中学2024-2025学年高三下学期联考(二)数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市崇义中学2024-2025学年高三下学期联考(二)数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.已知的值域为,当正数a,b满足时,则的最小值为()A. B.5 C. D.93.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.4.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.5.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A. B. C. D.6.已知是虚数单位,若,则()A. B.2 C. D.37.的展开式中的系数为()A.-30 B.-40 C.40 D.508.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为()A. B. C. D.9.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③ B.②④ C.①②③ D.②③④10.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A. B. C.或 D.11.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.812.当时,函数的图象大致是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.14.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.15.若关于的不等式在时恒成立,则实数的取值范围是_____16.数列的前项和为,则数列的前项和_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.18.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).19.(12分)已知.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求的最小值.20.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.21.(12分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100cm,试判断该零件是否属于“不合格”的零件.22.(10分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.2.A【解析】

利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【详解】解:∵的值域为,∴,∴,∴,当且仅当时取等号,∴的最小值为.故选:A.本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.3.C【解析】

显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C本题考查零点存在性定理的应用,属于基础题.4.D【解析】

设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法5.C【解析】

设过点作圆的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆的切线的切点为,,所以是中点,,,.故选:C.本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.6.A【解析】

直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A考查复数的运算及其模的求法,是基础题.7.C【解析】

先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.8.A【解析】

将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,∵四面体所有棱长都是4,∴正方体的棱长为,设球的半径为,则,解得,所以,故选:A.本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.9.B【解析】

利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.10.D【解析】

根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,,解得(舍去).故选:D.本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.11.A【解析】

先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.12.B【解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.二、填空题:本题共4小题,每小题5分,共20分。13.8【解析】

根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:本题考查算法中的语言,属于基础题.14.【解析】

过点做,可得,,由可得,可得,代入可得答案.【详解】解:如图,过点做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案为:.本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.15.【解析】

利用对数函数的单调性,将不等式去掉对数符号,再依据分离参数法,转化成求构造函数最值问题,进而求得的取值范围。【详解】由得,两边同除以,得到,,,设,,由函数在上递减,所以,故实数的取值范围是。本题主要考查对数函数的单调性,以及恒成立问题的常规解法——分离参数法。16.【解析】

解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】

(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【详解】(1)因为平面,所以,又因为,,,所以,因此,所以,因此平面,所以,从而,又四边形为平行四边形,则四边形为矩形;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,所以,平面的法向量,设平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.本题考查空间垂直关系的证明,考查向量法求二面角的大小,考查学生计算能力,是中档题.18.(1),.(2),【解析】

(1)利用枚举法将范数为奇数的二元有序实数对都写出来,再做和;(2)用组合数表示和,再由公式或将组合数进行化简,得出最终结果.【详解】解:(1)范数为奇数的二元有序实数对有:,,,,它们的范数依次为1,1,1,1,故,.(2)当n为偶数时,在向量的n个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为:1,3,…,进行讨论:的n个坐标中含1个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含3个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含个0,其余坐标为1或,共有个,每个的范数为1;所以,.因为,①,②得,,所以.解法1:因为,所以..解法2:得,.又因为,所以.本题考查了数列和组合,是一道较难的综合题.19.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)当时,令,作出的图像,结合图像即可求解;(Ⅱ)结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【详解】(Ⅰ)令,作出它们的大致图像如下:由或(舍),得点横坐标为2,由对称性知,点横坐标为﹣2,因此不等式的解集为.(Ⅱ)..取等号的条件为,即,联立得因此的最小值为.本题考查绝对值不等式、基本不等式,属于中档题20.(1)见解析(2)【解析】

(1)第(1)问,连交于,连接.证明//,即证平面.(2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知又为的中点,为的重心,∴在中,,故//.又平面,平面,∴平面.方法二:过作交PD于N,过F作FM||AD交CD于M,连接MN,G为△PAD的重心,又ABCD为梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF为平行四边形.因为GF||MN,(2)方法一:由平面平面,与均为正三角形,为的中点∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又为正三角形,得,∴,得∴三棱锥的体积为.方法二:由平面平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论