




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆阿克苏地区沙雅县达标名校2025届初三下学期(4月)模拟考试数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.在实数,有理数有()A.1个 B.2个 C.3个 D.4个2.若与互为相反数,则x的值是()A.1 B.2 C.3 D.43.将1、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A. B.6 C. D.4.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)34567频数1254﹣xxA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差5.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形6.下列大学的校徽图案是轴对称图形的是()A. B. C. D.7.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE8.如图所示的几何体的俯视图是()A. B. C. D.9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.4510.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b二、填空题(本大题共6个小题,每小题3分,共18分)11.当x=_________时,分式的值为零.12.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.13.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.15.方程的解是__________.16.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=.三、解答题(共8题,共72分)17.(8分)综合与探究:如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.18.(8分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.学员培训时段培训学时培训总费用小明普通时段206000元高峰时段5节假日时段15小华普通时段305400元高峰时段2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元①求y与x之间的函数关系式,并确定自变量x的取值范围;②小陈如何选择培训时段,才能使得本次培训的总费用最低?19.(8分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.20.(8分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-2(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取54(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.21.(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).22.(10分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.甲乙丙单价(元/米2)(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.23.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?24.已知.(1)化简A;(2)如果a,b是方程的两个根,求A的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D.考点:有理数.2、D【解析】由题意得+=0,去分母3x+4(1-x)=0,解得x=4.故选D.3、B【解析】
根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5个数是,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,则(1,5)与(13,1)表示的两数之积是1.故选B.4、B【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即5+52∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.5、C【解析】
根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.6、B【解析】
根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.8、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.9、C【解析】
根据题意列出代数式,化简即可得到结果.【详解】根据题意得:a÷(1−20%)=a÷45=5故答案选:C.本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.10、D【解析】
根据二次函数的图象与性质逐一判断即可求出答案.【详解】由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向上,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=<0,∴b<0,∴abc<0,故B正确;∵当x=1时,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正确;∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选D.考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】
根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算即可.【详解】解:依题意得:2﹣x=1且2x+2≠1.解得x=2,故答案为2.本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.12、【解析】
作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=x,则BD=,然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则S△ABC===【详解】如图作CD⊥AB,∵tanA=2,设AD=x,CD=2x,∴AC=x,∴BD=,在Rt△CBD中BC2=BD2+CD2,即52=4x2+,x2=,∴S△ABC===此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.13、【解析】
由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.【详解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案为-.本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.14、(,)【解析】
由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15、x=1【解析】
将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本题答案为:x=1.在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.16、1【解析】试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.考点:三角形相似的应用.三、解答题(共8题,共72分)17、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF为菱形,见解析;(3)存在,P点坐标为(,)或(,﹣).【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.【详解】(1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),设直线l的解析式为y=kx+b,把A(﹣1,0),D(0,﹣)代入得,解得,∴直线l的解析式为y=﹣x﹣;(2)①作A′H⊥x轴于H,如图,∵OA=1,OD=,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵点A关于直线l的对称点为A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=EA′=t,A′H=EH=t,∴OH=OE+EH=t﹣1+t=t﹣1,∴A′(t﹣1,t);②把A′(t﹣1,t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,解得t1=0(舍去),t2=2,∴当点A′落在抛物线上时,直线l的运动时间t的值为2;此时四边形A′BEF为菱形,理由如下:当t=2时,A′点的坐标为(2,),E(1,0),∵∠OEF=60°∴OF=OE=,EF=2OE=2,∴F(0,),∴A′F∥x轴,∵A′F=BE=2,A′F∥BE,∴四边形A′BEF为平行四边形,而EF=BE=2,∴四边形A′BEF为菱形;(3)存在,如图:当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),∵OE=t﹣1=,∴此时P点坐标为(,);当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=A′Q=•t=t,∴t﹣1+t=3,解得t=,此时A′(1,),E(,0),点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),综上所述,满足条件的P点坐标为(,)或(,﹣).本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.18、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;②根据一次函数的性质结合自变量的取值范围即可求解.【详解】(1)由题意,得,解得,故a,b的值分别是120,180;(2)①由题意,得y=120x+180(40-x),化简得y=-60x+7200,∵普通时段的培训学时不会超过其他两个时段总学时的,∴x≤(40-x),解得x≤,又x≥0,∴0≤x≤;②∵y=-60x+7200,k=-60<0,∴y随x的增大而减小,∴x取最大值时,y有最小值,∵0≤x≤;∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.19、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】
1)首先求得点A的坐标,再求得点B的坐标,用h表示出点D的坐标后代入直线的解析式即可验证答案。(2)①根据两种不同的表示形式得到m和h之间的函数关系即可。②点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F,证得△ACE~△CDF,然后用m表示出点C和点D的坐标,根据相似三角形的性质求得m的值即可。【详解】解:(1)当x=0时候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是两个抛物线的交点,∴点C的纵坐标可以表示为:(a﹣1)2+1或(a﹣n)2﹣n+2由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。20、(1)抛物线的解析式为:y=1(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣32(3)M的坐标为(1,﹣83【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴抛物线的解析式为:y=1答:抛物线的解析式为:y=1(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=54时,5t2﹣8t+4=54,得20t解得t=12,t=11此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣32若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为﹣32即R(3,﹣32代入y=1∴这时存在R(3,﹣32(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣32)代入,y=左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣32答:存在,R点的坐标是(3,﹣32(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=23,b=﹣10∴y=23x﹣10抛物线y=1把x=1代入得:y=﹣8∴M的坐标为(1,﹣83答:M的坐标为(1,﹣83考点:二次函数综合题.21、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】
(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
(2)根据函数的特点得出a=m,--=0,,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.【详解】解:(1)答案不唯一,如;
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 突破局限新材料新技术的创新研究考核试卷
- 自动售货机课程设计答辩
- 电气设备连锁零售管理考核试卷
- 电气机械的安全操作与事故处理考核试卷
- 环保工程环保产业发展趋势考核试卷
- 平安工地宣传教育演讲稿
- 2025中英文翻译贷款合同条款
- 2025年基本建设借款合同模板
- 2025车辆租赁合同范本
- 2025年签订房屋租赁合同应注意的关键事项
- 2023年江苏凤凰出版传媒集团有限公司招聘笔试模拟试题及答案解析
- 国开电大操作系统 Linux系统使用 实验报告
- 干部选拔任用工作全部系列表格
- 胃癌合并冠心病的护理查房
- 风电行业产品质量先期策划手册
- 社区日间照料中心运营方案
- 二年级下册期末教学质量分析P的课件
- 初中数学北师大七年级下册(2023年新编)综合与实践综合与实践-设计自己的运算程序 王颖
- 可燃气体报警系统安装记录
- 伸臂式焊接变位机设计总体设计和旋转减速器设计毕业设计
- 血细胞仪白细胞五分类法原理和散点图特征
评论
0/150
提交评论