




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ELLIPTICCURVES
J.S.MILNE
August21,1996;vl.Ol
ABSTRACT.ThesearethenotesforMath679,UniversityofMichigan.Winter1996,exactly
astheywerehandedoutduringthecourseexceptforsomeminorcorrections.
Pleasesendcommentsandcorrectionstomeatjmilne@using“Math679“as
thesubject.
CONTENTS
Introduction1
Fastfactorizationofintegers
Congruentnumbers
Fermat5slasttheorem
1.ReviewofPlaneCurves2
Affineplanecurves
Projectiveplanecurves
2.RationalPointsonPlaneCurves.6
Hensel'slemma.
Abriefintroductiontothep-adicnumbers
Somehistory
3.TheGroupLawonaCubicCurve12
4.FunctionsonAlgebraicCurvesandtheRiemann-RochTheorem14
Regularfunctionsonaffinecurves
Regularfunctionsonprojectivecurves
TheRiemann-Rochtheorem
Thegrouplawrevisited
Perfectbasefields
5.DefinitionofanEllipticCurve19
Planeprojectivecubiccurveswitharationalinflectionpoint
Generalplaneprojectivecurves
Completenonsingularcurvesofgenus1
Copyright1996J.S.Milne.Youmaymakeonecopyofthesenotesforyourownpersonaluse.
i
J.S.MILNE
Thecanonicalformoftheequation
Thegrouplawforthecanonicalform
ReductionofanEllipticCurveModulop23
Algebraicgroupsofdimension1
Singularcubiccurves
Reductionofanellipticcurve
Semistablereduction
Reductionmodulo2and3
Otherfields
7.EllipticCurvesover29
8.TorsionPoints32
Formulas
SolutiontoExercise4.8
9.NeronModels37
Weierstrassminimalmodels
TheworkofKodaira
ThecompleteNeronmodel
Summary
10.EllipticCurvesovertheComplexNumbers41
Latticesandbases
QuotientsofCbylattices
Doublyperiodicfunctions
TheholomorphicmapsC/A—C/Az
TheWeierstrasspfunction
Eisensteinseries
Thefieldofdoublyperiodicfunctions
TheellipticcurveF(A)
ClassificationofellipticcurvesoverC
Torsionpoints
Endomorphisms
Appendix:Resultants
11.TheMordell-WeilTheorem:StatementandStrategy54
12.Groupcohomology55
Cohomologyoffinitegroups
CohomologyofinfiniteGaloisgroups
13.TheSelmerandTate-Shafarevichgroups59
ELLIPTICCURVESiii
14.TheFinitenessoftheSelmerGroup60
ProofofthefinitenessoftheSelmergroupinaspecialcase
ProofofthefinitenessoftheSelmergroupinthegeneralcase
15.Heights65
HeightsonP1
HeightsonE
16.CompletionoftheProofoftheMordell-WeilTheorem,andFurtherRe
marks70
TheProblemofComputingtheRankofE(Q)
TheNeron-TatePairing
Computingtherank
17.GeometricInterpretationoftheCohomologyGroups;Jacobians75
Principalhomogeneousspaces(ofsets)
Principalhomogeneousspaces(ofcurves)
Theclassificationofprincipalhomogeneousspaces
GeometricInterpretationof
GeometricInterpretationoftheExactSequence
TwistsofEllipticCurves
Curvesofgenus1
TheclassificationofellipticcurvesoverQ(summary)
18.TheTate-ShafarevichGroup;FailureOfTheHassePrinciple83
19.EllipticCurvesOverFiniteFields86
TheFrobeniusmap;curvesofgenus1overFp
Zetafunctionsofnumberfields
Zetafunctionsofaffinecurvesoverfinitefields
ExpressionofZ(C,T)intermsofthepointsofC
Zetafunctionsofplaneprojectivecurves
Therationalityofthezetafunctionofanellipticcurve
ProofoftheRiemannhypothesisforellipticcurves
ABriefHistoryofZeta
20.TheConjectureofBirchandSwinnerton-Dyer100
Introduction
ThezetafunctionofavarietyoverQ
ThezetafunctionofanellipticcurveoverQ
StatementoftheConjectureofBirchandSwinnerton-Dyer
What'sknownabout,theconjectureofB-S/D
ivJ.S.MILNE
21.EllipticCurvesandSpherePackings106
Spherepackings
Example
22.AlgorithmsforEllipticCurves110
23.TheRiemannSurfacesX()(N)112
ThenotionofaRiemannsurface
QuotientsofRiemannsurfacesbygroupactions
TheRiemannsurfacesX(「)
Thetopologyonr\IHI*
ThecomplexstructureonFo(N)\H*
ThegenusofX°(N)
24.Xo(N)asanAlgebraicCurveoverQ119
Modularfunctions
ThemeromorphicfunctionsonX。⑴
ThemeromorphicfunctionsonXo(N)
ThecurveX()(N)overQ
ThepointsonthecurveX()(N)
Variants
25.ModularForms125
Definitionofamodularform
Themodularformsforr()⑴
26.ModularFormsandtheL-seriesofEllipticCurves128
DirichletSeries
TheL-seriesofanellipticcurve
L-seriesandisogenyclasses
TheL-seriesofamodularform
ModularformswhoseL-serieshaveafunctionalequations
ModularformswhoseL-functionsareEulerproducts
DefinitionoftheHeckeoperators
Linearalgebra:thespectraltheorem
ThePeterssoninnerproduct
Newforms:thetheoremofAtkinandLehner
27.StatementoftheMainTheorems140
28.HowtogetanEllipticCurvefromaCuspForm142
DifferentialsonRiemannsurfaces
TheJacobianvarietyofaRiemannsurface
ConstructionoftheellipticcurveoverC
ELLIPTICCURVESv
ConstructionoftheellipticcurveoverQ
29.WhytheL-SeriesofEAgreeswiththeL-Seriesoff147
Theringofcorrespondencesofacurve
TheHeckecorrespondence
TheFrobeniusmap
Briefreviewofthepointsoforderponellipticcurves
TheEichler-Shimurarelation
Thezetafunctionofanellipticcurverevisited
TheactionoftheHeckeoperatorsonZ)
Theproofthatc(p)=ap
30.Wiles'sProof153
31.Fermat,AtLast156
Bibliography157
ELLIPTICCURVES1
INTRODUCTION
Anellipticcurveoverafieldkisanonsingularcompletecurveofgenus1withadistin
guishedpoint.Ifcharfc*2,3,itcanberealizedasaplaneprojectivecurve
222
yZ=X3+aXZ+bZ\4Q3+276*0,
andeverysuchequationdefinesanellipticcurveoverk.Asweshallsee,thearithmetic
theoryofellipticcurvesoverQ(andotheralgebraicnumberfields)isarichabeautiful
subject.Manyimportantphenomenafirstbecomevisibleinthestudyellipticcurves,and
ellipticcurveshavebeenusedsolvesomeveryfamousproblemsthat,atfirstsight,appear
tohavenothingtodowithellipticcurves.Imentionthreesuchproblems.
Fastfactorizationofintegers.Thereisanalgorithmforfactoringintegersthatuses
ellipticcurvesandisinmanyrespectsbetterthanpreviousalgorithms.See[K2,VI.4],
[ST,IV.4],or[C2,Chapter26].Peoplehavebeenfactoringintegersforcenturies,butrecently
thetopichasbecomeofpracticalsignificance:givenanintegernwhichistheproductn=pq
oftwo(large)primespandq,thereisacodeforwhichanyonewhoknowsncanencodea
message,butonlythosewhoknowp,qcandecodeit.Thesecurityofthecodedependson
nounauthorizedpersonbeingabletofactorn.
Congruentnumbers.Anaturalnumbernissaidtobecongruentifitoccursasthearea
ofarighttrianglewhosesideshaverationallength.Ifwedenotethelengthsofthesidesby
%n,thennwillbecongruentifandonlyiftheequations
9701
x+y=z、n=^xy
havesimultaneoussolutionsinQ.TheproblemwasofinteresttotheGreeks,andwas
discussedsystematicallybyArabscholarsinthetenthcentury.Fibonaccishowedthat5and
6arecongruent,Fermatthat1,2,3,arenotcongruent,andEulerprovedthat7iscongruent,
buttheproblemappearedhopelessuntilin1983Tunnellrelatedittoellipticcurves.
Fermafslasttheorem.RecentlyWilesprovedthatallellipticcurvesoverQ(withamild
restriction)ariseinacertainfashionfrommodularforms.Itfollowsfromhistheorem,that
foranoddprimep#3,theredoesnotexistanellipticcurveoverQwhoseequationhasthe
form
y2=X(X+Q)(X-b)
witha,b,a+ballpowersofintegers,i.e.,theredoesnotexistanontrivialsolutioninZ
totheequation
X。+Yp=Z。;
—Fermat^LastTheoremisproved!
Thecoursewillbeanintroductorysurveyofthesubjectoftenproofswillonlybe
sketched,butIwilltrytogiveprecisereferencesforeverything.
Therearemanyexcellentbooksonsubject-seetheBibliography.Silverman[S1,S2]is
becomingthestandardreference.
2J.S.MILNE
1.REVIEWOFPLANECURVES
Affineplanecurves.Letkbeafield.TheaffineplaneoverkisA2(fc)=k'2.
Anonconstantpolynomialfek[X,V],assumedtohavenorepeatedfactorinka][X,Y],
definesaplaneaffinecurveCfoverkwhosepointswithcoordinatesinanyfieldKDkare
thezerosoffinK2:
Cf(K)={(©y)EK2|F(x,y)=0}.
ThecurveCissaidtobeirreducibleiffisirreducible,anditissaidbegeometrically
irreducibleiffremainsirreducibleoverfcal(equivalent^,overanyalgebraicallyclosedfield
containingAr).
Sincek[X,Y]isauniquefactorizationdomain,wecanwriteanyfasaboveasaproduct
f=/1/2,,•/r°fdistinctirreduciblepolynomials,andthen
Cf=Cf}U・・・UC7r
withtheC//.irreduciblecurves.TheCy.arecalledtheirreduciblecomponentsofC/.
Example1.1.(a)Let/《X,Y)beanirreduciblepolynomialinY],noconstant
multipleofwhichliesQ[X,Y],andlet/i(X,Y)beitsconjugateoverQ(i.e.,replaceeach
,2with—,2).Then/(X,Y)=可/i(X,Y)&(X,Y)liesinQ[X,Y]becauseitisfixedby
theGaloisgroupofQ[,2]/Q.ThecurveCfisirreduciblebutnotgeometricallyirreducible.
(b)Letkbeafieldofcharacteristicp.Assumekisnotperfect,sothatthereexistsan
aek,akp.Consider
f(X,Y)=Xp+aYp.
Thenfisirreducibleink[X,F],butinfcal[X,Y]itequals(X+aY)pwhereo?=a(remember,
thebinomialtheoremtakesonaspeciallysimpleformforpthpowersincharacteristicp).
Thusfdoesnotdefineacurve.
Wedefinethepartialderivativesofapolynomialbytheobviousformulas.
LetP—(a,6)GC/(X),someKDk.Ifatleastoneofthepartialderivatives£,靠is
nonzeroatP,thenPissaidtobenonsingular,andthetangentlinetoCatPis
(&JX-W(i=0.
AcurveCissaidtobenonsingularifallthepointsinarenonsingular.Acurveor
pointthatisnotnonsingularsaidtobesingular.
Aside1.2.Lety)beareal-valuedfunctiononR2.InMath215onelearnsthatV/=可
(K,fy)isavectorfieldonR2that,atanypointP=(a,b)GR2,pointsinthedirection
inwhichJ(x,y)increasesmostrapidly(i.e.,hasthemostpositivedirectionalderivative).
Hence(V/)pisnormaltoanylevelcurve/(T,y)=cthroughF,andtheline
(▽/)P・(X—Q,Y—b)=0
passesthroughPandisnormaltothenormaltothelevelcurve.Itisthereforethetangent
line.
ELLIPTICCURVES3
Example1.3.Considerthecurve
c:产=+Q.X+b.
AtasingularpointofC
2Y=0,3X?+Q=0,产=+ax+b.
Assumechark*2.HenceY=QandXisacommonrootofX3+aX+bandits
derivative,i.e.,adoublerootofX3+aX+b.ThusCisnonsingular4=>X3+aX+bhas
nomultipleroot(infcal)<=>itsdiscriminant4a3+27/isnonzero.
Assumechark=2.ThenCalwayshasasingularpoint(possiblyinsomeextensionfield
ofk),namely,wherea:2+a=0and俨—+aa+6.
LetP=(a,b)€Cf(K).Wecanwrite/asapolynomialmX—aandY—bwith
coefficientsinK、say,
".)=/i(x_a,y_4+・・・+/n(x__b)
whereishomogeneousofdegreeiinX—aandY—h(thistheTaylorexpansionoffl).
ThepointPisnonsingularifandonlyiffi*0,inwhichcasethetangentlinetoC/atP
hasequation/i=0.
SupposethatPissingular,sothat
/(X,F)=fm(X—a,Y—b)+termsofhigherdegree,
wherefm7^0,m>2.ThenPissaidtohavemultiplicitymonC,denotedmp(C).If
m=2,thenPiscalledadoublepoint.Forsimplicity,take(a,b)=(0,0).Then(over
♦(X,y)=nw
whereeachLiisahomogeneouspolynomialQX+&YofdegreeonewithcoefficientsinA:al.
ThelinesLi=0arecalledthetangentlinestoC(atP,and%iscalledmultiplicityofL,.
ThepointPissaidtobeanordinarysingularityifthetangentlinesarealldistinct,i.e.,
ri=1foralli.Anordinarydoublepointiscalledanode.
Example1.4.ThecurveY2=X,3+aX2hasasingularityat(0,0).Ifa*0,itisanode,
andthetangentlinesat(0,0)areY=±,QX.Theyaredefinedoverkifandonlyifaisa
squareink.
IfQ=0,thesingularityisacusp.(AdoublepointPonacurveCiscalledacuspifthere
isonlyonetangentlineLto(7atP,and,withthenotationdefinedbelow,/(P,LAC)=3.)
2
ConsidertwocurvesCfandCginA(fe),andletPeC*/(X)Dg(K),someKDk.
AssumethatPisanisolatedpointofCfACg,i.e.,CfandCgdonothaveacommon
irreduciblecomponentpassingthroughP.WedefinetheintersectionnumberofCyandCg
atPtobe
KP,CfQCg)=dimKK[X,¥]—/(/,g)
(dimensionasX-vectorspaces).
Remark1.5.IfCfandCghavenocommoncomponent,then
EnQ)=din.k[X,Y]/U,g).
尸€C(A:a】)CC(ka】)
ThisisparticularlyusefulwhenCfandCgintersectatasinglepoint.
4J.S.MILNE
Example1.6.LetCbethecurveY2=X3,andletL:Y=0beitstangentlineat
P=(0,0).Then
233
I(F,£nC)=dimkk[X,Y]/(Y.Y-X)=dimfck[X]/(X)=3.
Remark1.7.(a)Theintersectionnumberdoesn'tdependonwhichfieldKthecoordinates
ofPareconsideredtoliein.
(b)Asexpected,/(F,CnZ?)=1ifandonlyifPisnonsingularonbothCandD,andthe
tangentlinestoCandDatParedistinct.Moregenerally,/(P,CC\D)>
withequalityifandonlyifCandDhavenotangentlineincommonatP.
Projectiveplanecurves.Theprojectiveplaneoverkis
呼⑻={(a;,y,z)ek3\(x,y,z)*(0,0,0)}/〜
where(①,y,z)〜(/,y1ifandonlyifthereexistsac#0suchthaty\z')=(CN,cy,cz).
Wewrite(x:y:z)fortheequivalenceclass1of(①,y,z).LetPGP2(fc);thetriples(①,y,z)
representingPlieonasinglelineL(P)throughtheoriginink3,andP一L(P)isabijection
fromP2(fc)tothesetofallsuchlines.
Projectiven-spacePn(fc)canbedefinedsimilarlyforanyn>0.
LetUQ={(z:g:z}|z00},andlet={(z:y:z)\z=0}.Then
(z,0)i(c:y:1):A2(fc)—UQ
isabijection,and
(s:y)i(?:y:0):W/)-Lg(k)
isabijection.Moreover,P2(A;)isthedisjointunion
ofthe"affineplane"UQwiththe“lineatinfinity"L^.Aline
aX+bY+cZ=Q
meetsatthepoint(—b:Q:0)=(1:—。0).ThuswecanthinkofP2(fe)asbeingthe
affineplanewithexactlyonepointaddedforeachfamilyofparallellines.
AnonconstanthomogeneouspolynomialFGassumedtohavenorepeated
factorink%definesaprojectiveplanecurveCFoverkwhosepointsinanyfieldKDkare
thezerosofFinP2(K):
。尸(K)={(x:y:z)\F(x,yYz)=0}.
Notethat,becauseFishomogeneous,
F(cx,cy,cz)=cde&FF(x,y,z),
andso,althoughitdoesn'tmakesensetospeakofthevalueofFatapointofP2,itdoes
makesensetosaywhetherornotFiszeroatP.Again,thedegreeofFiscalledthe
degreeofthecurveC,andaplaneprojectivecurveis(uniquely)aunionofirreducibleplane
projectivecurves.
Thecurve
y2Z=X3+aXZ2+bZ3
iThecolonismeanttosuggestthatonlytheratiosmatter.
ELLIPTICCURVES5
intersectsthelineatinfinityatthepoint(0:1:0),i.e.,atthesamepointasallthevertical
linesdo.Thisisplausiblegeometrically,because,asyougoouttheaffinecurve
Y2^X3+aX+h
withincreasingxandy,theslopeofthetangentlinetendstooo.
LetUi={(/:y:z}\y0},andletU2={(n:y:z)\x*0}.ThenUiandU2areagain,
inanaturalway,affineplanes;forexample,wecanidentify«withA2(fc)via
(7:1:2)一(x,z).
Sinceatleastoneofn,y,orzisnonzero,
/⑻=UoUUiUU2.
AplaneprojectivecurveC=CFistheunionofthreecurves,
C=CoUClUC25Ci=CnUi.
WhenweidentifyeachUiwithA2(fc)inthenaturalway,thenandC?become
identifiedwiththeaffinecurvesdefinedbythepolynomialsF(X,K,1),F(X,1,Z),and
F(l,y,Z)respectively.
Thecurve
C:y2z=X3+aX#+bZ3
isunusual,inthatitiscoveredbytwo(ratherthan3)affinecurves
Co:Y2=X3+aX+b
and
Ci:Z=X3+QXZ?+bZ3.
Thenotionsoftangentline,multiplicity,etc.canbeextendedtoprojectivecurvesby
notingthateachpointPofaprojectivecurveCwilllieonatleastoneoftheaffinecurves
Exercise1.8.LetPbeapointonaplaneprojectivecurveC=CF,ShowthatPis
singular,i.e.,itissingularontheplaneaffinecurveGforone(henceall)iifandonlyif
F(P)=0=(fy)=(器)=(歌).IfPisnonsingular,showthattheplaneprojective
line
Z=0
心黑)产得力图p
hasthepropertythatLAisthetangentlinetotheaffinecurveCCU&forz=0,1,2.
Theorem1.9(Bezout).LetCandDbeplaneprojectiveofdegreesmandnrespectively
overk,andassumethattheyhavenoirreduciblecomponentincommon.Thentheyintersect
al
overkinexactlymnpoints,countingmultiplicitiesfie,
£Z(P,Cn/?)=mn.
Proof.See[F]pll2,ormanyotherbooks.
6J.S.MILNE
Forexample,acurveofdegreemwillmeetthelineatinfinityinexactlympoints,counting
multiplicities.Ourfavouritecurve
C:y2Z=X3+aXZ2+bZ3
meetsLgatasinglepointP=(0:1:0),butI(P,LgClC)=3.[Exercise:Provethis!]In
general,anonsingularpointPonacurveCiscalledapointofinflectioniftheintersection
multiplicityofthetangentlineand(7atPis>3.
Supposekisperfect.ThenallthepointsofC(fcal)Cl。(炉])willhavecoordinatesinsome
finiteGaloisextensionKofk,andtheset
C(K)AO(K)CP2(7<)
isstableundertheactionofGal(K/k).
Remark1.10.(Fortheexperts.)Essentially,wehavedefinedanaffine(resp.projective)
curvetobeageometricallyreducedclosedsubschemeofA差(resp.吸)ofdimension1.Such
aschemecorrespondstoanidealofheightone,whichisprincipal,becausepolynomialrings
areuniquefactorizationdomains.Thepolynomialgeneratingtheidealoftheschemeis
uniquelydeterminedbytheschemeuptomultiplicationbyanonzeroconstant.Theother
definitionsinthissectionarestandard.
References:Thebestreferenceforwhatlittleweneedfromalgebraicgeometryis[F].
2.RATIONALPOINTSONPLANECURVES.
LetCbeaplaneprojectivecurveoverQ(orsomeotherfieldwithaninterestingarith
metic),definedbyahomogeneouspolynomialF(X,K,Z),Thetwofundamentalquestions
indiophantinegeometrythenare:
Question2.1.(a)DoesChaveapointinQ,thatis,doesF(X,Y,Z)haveanontrivialzero
inQ?
(b)Iftheanswerto(a)isyes,canwedescribethesetofcommonzeros?
Thereisalsothequestionofwhetherthereisanalgorithmtoanswerthesequestions.
Forexample,wemayknowthatacurvehasonlyfinitelymanypointswithouthavingan
algorithmtoactuallyfindthepoints.
Forsimplicity,intheremainderofthissection,I'llassumethatCisabsolutelyirreducible,
i.e.,thatF(X,Y,Z)isirreducibleoverQal.
Hereisoneobservationthatweshallusefrequently.LetKbeafinite(ofeveninfinite)
GaloisextensionofQ,andlet
/(x,y)=£%xkwQ[x'.
If(a,b)6K2isazeroof以X,K),thensoalsois(OQ,ob)foranyoGGal(K/Q),because
0=(Q,b)=O(£Q〃Q%)=£049。)'(4加=
ThusGal(K/Q)actsonC(K),whereCistheaffinecurvedefinedbyMore
generally,ifCi,C2,...areaffinecurvesoverQ,thenGal(K/Q)stabilizesthesetC\(K)A
02(K)….Onapplyingthisremarktothecurves/(X,Y)=0,聂(X,Y)=0,柒(X)Y)=0,
weseethatGal(K/Q)stabilizesthesetofsingularpointsinSimilarremarksapply
toprojectivecurves.
ELLIPTICCURVES7
Curvesofdegreeone.Firstconsideracurveofdegreeone,i.e.,aline,
C:aX+hY+cZ=Q,a,h,cinQandnotallzero.
Italwayshaspoints,anditispossibletoparameterizethepoints:if,forexample,。羊0,the
map
/、/ab、
(s:力)1(s:力:一s—t)
cc
isabijectionfromPx(fc)ontoC(fe).
Curvesofdegreetwo.InthiscaseF(X,Y,Z)isaquadraticformin3variables,andCisa
conic.NotethatCcan'tbesingular:ifPhasmultiplicitym,then(accordingto(1.7b))a
lineLthroughPandasecondpointQonthecurvewillhave
/(RLAC)+I(Q,LnC)>2+1=3,
whichviolatesBezout'stheorem.
SometimesitiseasytoseethatC(Q)=0.Forexample,
X2+Y2+Z2
hasnonontrivialzerobecauseithasnonontrivialrealzero.Similarly,
X'2+Y2-3Z2
hasnonontrivialzero,becauseifitdiditwouldhaveazero(x,y,z)withx,y,z6Zand
gcd®y,z)=1.TheonlysquaresinZ/3Zare0and1,andso
x2+y2=0mod3
impliesthatx=Q=ymod3.Butthen3mustdivide%,whichcontradictsourassumption
thatgcd(%y、z)=1.Thisargumentshows,infact,thatX'2+Y'2—3Z2doesnothavea
nontrivialzerointhefieldQ3of3-adicnumbers.
Theseexamplesillustratetheusefulnessofthefollowingstatement:anecessarycondition
forCtohaveapointwithcoordinatesinQisthatithaveapointwithcoordinatesinR
andinQpforallp.AtheoremofLegendresaysthattheconditionisalsosufficient:
Theorem2.2(Legendre).AquadraticformF(X,KZ)withcoefficientsinQhasanon
trivialzeroinQifandonlyifithasanontrivialzeroinIRandinforallp.
Remark2.3.(a)ThisisnotquitehowLegendre(17521833)statedit,sincep-adicnumbers
arelessthan100yearsold
(b)Thetheoremdoesinfactgiveapracticalalgorithmforshowingthataquadraticform
doeshaveanontrivialrationalzero——see(2.11)below.
(c)ThetheoremistrueforquadraticformsF(X(),,Xn)inanynumberofvariables
overanynumberfieldK(Hasse-Minkowskitheorem).Thereisaverydown-to-earthproof
oftheoriginalcaseofthetheoremin[C2]ittakesthreelectures.Agoodexpositionof
theproofforformsoverQinanynumberofvariablesistobefoundinSerre,Courseon
Arithmetic.Thekeycasesare3and4variables(2istrivial,andfor>5variables,oneuses
inductiononn),andthekeyresultneededforitsproofisthequadraticreciprocitylaw.
FornumberfieldsKotherQ,theproofrequirestheHilbertreciprocitylaw,whichisbest
derive
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逐项解析的Msoffice试题及答案
- 财务成本管理的逻辑思维发展试题及答案
- 计算机二级Python关键考点试题及答案
- 冬季备考宝典计算机二级C++试题及答案
- 二级计算机公共基础知识试题及答案征集
- 二级Web考试知识扩展试题及答案
- 语言的象征与文学表达试题及答案
- 数据分析与Python结合试题及答案
- 轻松掌握2025年计算机二级MySQL试题及答案
- 设计思路的计算机二级Python考试试题及答案
- 隧道工程隧道洞口临建施工方案
- 心理咨询的面谈技术
- DBJ∕T13-374-2021 福建省钢筋桁架叠合楼板技术标准
- 事故池管理的有关规定
- (word完整版)污水处理厂安全评价报告
- DB50∕T 867.6-2019 安全生产技术规范 第6部分:黑色金属冶炼企业
- 新产品开发流程课件
- 高中语文部编版选择性必修下册第四单元 单元学习导航 课件 (8张PPT)
- 化妆品原料-PPT课件
- 重庆市参加企业职工基本养老保险人员退休审批表
- 混凝土结构课程设计244
评论
0/150
提交评论