




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§2.1.1指数与指数幂的运算(1)学习目标1.了解指数函数模型背景及实用性、必要性;2.了解根式的概念及表示方法;3.理解根式的运算性质.学习过程一、课前准备(预习教材P48~P50,找出疑惑之处)复习1:正方形面积公式为;正方体的体积公式为.复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的,记作;如果一个数的立方等于a,那么这个数叫做a的,记作.二、新课导学※学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1.某市人口平均年增长率为1.25℅,1990年人口数为a万,则x年后人口数为多少万?实例2.给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3℅,则x年后GDP为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14关系为.探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察:,那么就叫4的;,那么3就叫27的;,那么就叫做的.依此类推,若,,那么叫做的.新知:一般地,若,那么叫做的次方根(throot),其中,.简记:.例如:,则.反思:当n为奇数时,n次方根情况如何?例如:,,记:.当n为偶数时,正数的n次方根情况?例如:的4次方根就是,记:.强调:负数没有偶次方根;0的任何次方根都是0,即.试试:,则的4次方根为;,则的3次方根为.新知:像的式子就叫做根式(radical),这里n叫做根指数(radicalexponent),a叫做被开方数(radicand).试试:计算、、.反思:从特殊到一般,、的意义及结果?结论:.当是奇数时,;当是偶数时,.※典型例题例1求下类各式的值:(1);(2);(3);(4)().变式:计算或化简下列各式.(1);(2).推广:(a0).※动手试试练1.化简.练2.化简.三、总结提升※学习小结1.n次方根,根式的概念;2.根式运算性质.※知识拓展1.整数指数幂满足不等性质:若,则.2.正整数指数幂满足不等性质:①若,则;②若,则.其中N*.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.的值是().A.3B.-3C.3D.812.625的4次方根是().A.5B.-5C.±5D.253.化简是().A.B.C.D.4.化简=.5.计算:=;.课后作业1.计算:(1);(2).2.计算和,它们之间有什么关系?你能得到什么结论?3.对比与,你能把后者归入前者吗?§2.1.1指数与指数幂的运算(2)学习目标1.理解分数指数幂的概念;2.掌握根式与分数指数幂的互化;3.掌握有理数指数幂的运算.学习过程一、课前准备(预习教材P50~P53,找出疑惑之处)复习1:一般地,若,则叫做的,其中,.简记为:.像的式子就叫做,具有如下运算性质:=;=;=.复习2:整数指数幂的运算性质.(1);(2);(3).二、新课导学※学习探究探究任务:分数指数幂引例:a>0时,,则类似可得;,类似可得.新知:规定分数指数幂如下;.试试:(1)将下列根式写成分数指数幂形式:=;=;=.(2)求值:;;;.反思:①0的正分数指数幂为;0的负分数指数幂为.②分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质:()·;;.※典型例题例1求值:;;;.变式:化为根式.例2用分数指数幂的形式表示下列各式:(1);(2);(3).例3计算(式中字母均正):(1);(2).小结:例2,运算性质的运用;例3,单项式运算.例4计算:(1);(2);(3).小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①的结果?结论:无理指数幂.(结合教材P53利用逼近的思想理解无理指数幂意义)②无理数指数幂是一个确定的实数.实数指数幂的运算性质如何?※动手试试练1.把化成分数指数幂.练2.计算:(1);(2).三、总结提升※学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.※知识拓展放射性元素衰变的数学模型为:,其中t表示经过的时间,表示初始质量,衰减后的质量为m,为正的常数.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.若,且为整数,则下列各式中正确的是().A.B.C.D.2.化简的结果是().A.5B.15C.25D.1253.计算的结果是().A.B.C.D.4.化简=.5.若,则=.课后作业1.化简下列各式:(1);(2).2.计算:.§2.1.1指数与指数幂的运算(练习)学习目标1.掌握n次方根的求解;2.会用分数指数幂表示根式;3.掌握根式与分数指数幂的运算.学习过程一、课前准备(复习教材P48~P53,找出疑惑之处)复习1:什么叫做根式?运算性质?像的式子就叫做,具有性质:=;=;=.复习2:分数指数幂如何定义?运算性质?①;.其中②;;.复习3:填空.①n为时,.②求下列各式的值:=;=;=;=;=;=;=.二、新课导学※典型例题例1已知=3,求下列各式的值:(1);(2);(3).补充:立方和差公式.小结:①平方法;②乘法公式;③根式的基本性质(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立.例如,.变式:已知,求:(1);(2).例2从盛满1升纯酒精的容器中倒出升,然后用水填满,再倒出升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:①方法:摘要→审题;探究→结论;②解应用问题四步曲:审题→建模→解答→作答.※动手试试练1.化简:.练2.已知x+x-1=3,求下列各式的值.(1);(2).练3.已知,试求的值.三、总结提升※学习小结1.根式与分数指数幂的运算;2.乘法公式的运用.※知识拓展1.立方和差公式:;.2.完全立方公式:;.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.的值为().A.B.C.3D.7292.(a>0)的值是().A.1B.aC.D.3.下列各式中成立的是().A.B.C.D.4.化简=.5.化简=.课后作业1.已知,求的值.2.探究:时,实数和整数所应满足的条件.§2.1.2指数函数及其性质(1)学习目标1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2.理解指数函数的概念和意义;3.能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P54~P57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1);(2);(3);.其中复习2:有理指数幂的运算性质.(1);(2);(3).二、新课导学※学习探究探究任务一:指数函数模型思想及指数函数概念实例:A.细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数叫做指数函数(exponentialfunction),其中x是自变量,函数的定义域为R.反思:为什么规定>0且≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象:,讨论:(1)函数与的图象有什么关系?如何由的图象画出的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质.变底数为3或后呢?新知:根据图象归纳指数函数的性质.a>10<a<1图象性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在R上是增函数(4)在R上是减函数※典型例题例1函数()的图象过点,求,,的值.小结:①确定指数函数重要要素是;②待定系数法.例2比较下列各组中两个值的大小:(1);(2);(3);(4).小结:利用单调性比大小;或间接利用中间数.※动手试试练1.已知下列不等式,试比较m、n的大小:(1);(2).练2.比较大小:(1);(2),.三、总结提升※学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.※知识拓展因为的定义域是R,所以的定义域与的定义域相同.而的定义域,由的定义域确定.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.函数是指数函数,则的值为().A.1B.2C.1或2D.任意值2.函数f(x)=(a>0,a≠1)的图象恒过定点().A.B.C.D.3.指数函数①,②满足不等式,则它们的图象是().4.比较大小:.5.函数的定义域为.课后作业1.求函数y=的定义域.2.探究:在[m,n]上,值域?§2.1.2指数函数及其性质(2)学习目标1.熟练掌握指数函数概念、图象、性质;2.掌握指数型函数的定义域、值域,会判断其单调性;3.培养数学应用意识.学习过程一、课前准备(预习教材P57~P60,找出疑惑之处)复习1:指数函数的形式是,其图象与性质如下a>10<a<1图象性质(1)定义域:(2)值域:(3)过定点:(4)单调性:复习2:在同一坐标系中,作出函数图象的草图:,,,,,.思考:指数函数的图象具有怎样的分布规律?二、新课导学※典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?(2)从2000年起到2020年我国人口将达到多少?小结:学会读题摘要;掌握从特殊到一般的归纳法.试试:20XX年某镇工业总产值为100亿,计划今后每年平均增长率为8%,经过x年后的总产值为原来的多少倍?多少年后产值能达到120亿?小结:指数函数增长模型.设原有量N,每次的增长率为p,则经过x次增长后的总量y=.我们把形如的函数称为指数型函数.例2求下列函数的定义域、值域:(1);(2);(3).变式:单调性如何?小结:单调法、基本函数法、图象法、观察法.试试:求函数的定义域和值域,并讨论其单调性.※动手试试练1.求指数函数的定义域和值域,并讨论其单调性.练2.已知下列不等式,比较的大小.(1);(2);(3);(4).练3.一片树林中现有木材30000m3,如果每年增长5%,经过x年树林中有木材ym3,写出x,y间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m3.三、总结提升※学习小结1.指数函数应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江苏省南京市、盐城市高三下学期3月一模政治试题 含解析
- 公司火灾扑救应急预案(3篇)
- 计算机考试备考工具试题及答案
- 森林火灾应急扑救预案(3篇)
- 2025年国际市场中的战略风险分析试题及答案
- 开源社区参与与贡献试题及答案
- 消防火灾应急预案是什么(3篇)
- 行政法学考试难点试题及答案揭秘
- 行政法学持续发展试题及答案
- 网络监控设备试题与答案回顾
- 2024年临期食品创新创业计划书
- 2023钢膜结构停车棚施工合同协议书
- 电力行业安全检查表(文档-)(正式版)
- 小学生古诗词知识竞赛题(附答案)
- 基于激光点云数据的三维模型构建
- 乔木栽植施工方案
- 《新时代劳动教育》新时代劳动价值观
- 6人小品《没有学习的人不伤心》台词完整版
- 直述句与转述句互换
- 物业公司投标文件资料
- “循环经济关键技术与装备”重点专项2023年度项目申报指南
评论
0/150
提交评论