2025年高考数学考前冲刺(4)倒计时1-5天(原卷版)_第1页
2025年高考数学考前冲刺(4)倒计时1-5天(原卷版)_第2页
2025年高考数学考前冲刺(4)倒计时1-5天(原卷版)_第3页
2025年高考数学考前冲刺(4)倒计时1-5天(原卷版)_第4页
2025年高考数学考前冲刺(4)倒计时1-5天(原卷版)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四辑平面向量(选填题)…………………01排列组合与二项式定理(选填题)…………………05事件与概率、分布列与统计综合(选填题)………11复数(选填题)………………………20集合与常用逻辑用语(选填题)……………………24平面向量(选填题)年份题号分值题干考点2024年新高考I卷35(2024·新课标Ⅰ卷·高考真题)已知向量,若,则(

)A. B.C.1 D.2向量垂直的坐标表示;平面向量线性运算的坐标表示2024年新高考II卷35(2024·新课标Ⅱ卷·高考真题)已知向量满足,且,则(

)A. B.C.D.1数量积的运算律;已知数量积求模;垂直关系的向量表示2023年新高考I卷35(2023·新课标Ⅰ卷·高考真题)已知向量,若,则(

)A.B.C.D.平面向量线性运算的坐标表示;向量垂直的坐标表示;利用向量垂直求参数2023年新高考II卷135(2023·新课标Ⅱ卷·高考真题)已知向量,满足,,则.数量积的运算律2022年新高考I卷35(2022·新高考全国Ⅰ卷·高考真题)在中,点D在边AB上,.记,则(

)A. B.C. D.用基底表示向量2022年新高考II卷45(2022·新高考全国Ⅱ卷·高考真题)已知向量,若,则(

)A. B.C.5 D.6向量夹角的坐标表示;平面向量线性运算的坐标表示近三年新高考数学平面向量选填题考查情况总结​考点:涵盖向量垂直的坐标表示(2024年新课标Ⅰ卷)、数量积运算及向量垂直(2024年新课标Ⅱ卷)、向量线性运算与垂直(2023年新课标Ⅰ卷)、数量积运算律(2023年新课标Ⅱ卷)、用基底表示向量(2022年新课标Ⅰ卷)、向量夹角与线性运算(2022年新课标Ⅱ卷)。​题型:多为选择题,分值5分,侧重考查向量的坐标运算、数量积、垂直关系及线性运算,注重对向量基本概念和运算规则的理解与应用。2025年新高考平面向量选填题高考预测​题型与分值:预计为选择题或填空题,分值5分。​考查方向:延续对向量垂直、数量积、线性运算的考查,可能强化坐标运算与几何意义的结合,或涉及向量模长、夹角的综合计算,注重运算能力与逻辑推理,如根据向量垂直或数量积求参数,或利用坐标运算解决向量关系问题。向量的运算两点间的向量坐标公式:,,终点坐标始点坐标向量的加减法,,向量的数乘运算,则:向量的模,则的模相反向量已知,则;已知单位向量向量的数量积向量的夹角投影向量向量在上的投影向量为向量的平行关系向量的垂直关系向量模的运算典例1(2024·新课标Ⅰ卷·高考真题)已知向量,若,则(

)A. B. C.1 D.2典例2(2024·新课标Ⅱ卷·高考真题)已知向量满足,且,则(

)A. B. C. D.1典例3(2023·新课标Ⅰ卷·高考真题)已知向量,若,则(

)A. B.C. D.典例4(2023·新课标Ⅱ卷·高考真题)已知向量,满足,,则.典例5(2022·新高考全国Ⅰ卷·高考真题)在中,点D在边AB上,.记,则(

)A. B. C. D.【名校预测·第一题】(福建省福州第一中学2024-2025学年高三数学试题)已知,若,则(

)A. B. C. D.【名校预测·第二题】(浙江省杭州学军中学2024-2025学年高三下学期3月月考数学试题)已知向量,若反向共线,则实数的值为(

)A. B.3 C.3或 D.或7【名校预测·第三题】(湖北省武汉市华中师范大学第一附属中学2024-2025学年数学试题)已知,,若与的夹角是钝角,则实数的取值范围是.【名校预测·第四题】(山东省泰安第一中学2024-2025学年高三下学期4月月考数学试题)若向量在向量上的投影向量为,且,则(

)A. B. C. D.【名校预测·第五题】(重庆市巴蜀中学2024-2025学年高三下学期二诊数学试题)已知向量都是单位向量,且向量满足向量的夹角为,则的最大值为(

)A.2 B. C. D.3【名师押题·第一题】已知向量,,若,则的值为.【名师押题·第二题】已知单位向量,满足,则向量在向量上的投影向量为(

)A. B. C. D.【名师押题·第三题】已知平面向量,,,,且A,B,C三点共线,则实数(

)A. B. C. D.2【名师押题·第四题】在直角梯形中,,,,是的中点,若,则(

).A.1 B. C. D.【名师押题·第五题】在等边中,,点M为AB的中点,点N满足,则(

)A. B. C. D.【名师押题·第六题】已知平面向量,若,则(

)A. B. C. D.排列组合与二项式定理(选填题)年份题号分值题干考点2024年新高考II卷145(2024·新课标Ⅱ卷·高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.全排列问题;写出基本事件2023年新高考I卷135(2023·新课标Ⅰ卷·高考真题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).分类加法计数原理;实际问题中的组合计数问题2023年新高考II卷35(2023·新课标Ⅱ卷·高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有(

).A.种B.种C.种D.种分步乘法计数原理及简单应用;实际问题中的组合计数问题;抽样比、样本总量、各层总数、总体容量的计算2022年新高考I卷135(2022·新高考全国Ⅰ卷·高考真题)的展开式中的系数为(用数字作答).两个二项式乘积展开式的系数问题2022年新高考II卷55(2022·新高考全国Ⅱ卷·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有(

)A.12种 B.24种C.36种 D.48种元素(位置)有限制的排列问题;相邻问题的排列问题近三年新高考数学排列组合与二项式定理选填题考查情况总结​考点:涵盖排列问题(2024年新课标Ⅱ卷方格表选方格)、分类加法计数(2023年新课标Ⅰ卷)、分层抽样组合计数(2023年新课标Ⅱ卷)、二项式展开式系数(2022年新课标Ⅰ卷)、相邻排列问题(2022年新课标Ⅱ卷),侧重计数原理与公式应用。​题型:均为选填题,分值5分,注重实际情境中的计数与二项式定理简单计算。2025年新高考排列组合与二项式定理选填题高考预测​题型与分值:预计为选填题,分值5分。​考查方向:延续排列组合实际应用(如分组、排队),二项式定理求特定项系数,或与概率等简单结合,强化计数原理(分类、分步)及公式运用,考查分析与计算能力。1.分类计数原理(加法原理).2.分步计数原理(乘法原理).3.排列数公式==.(,∈N*,且).注:规定.4.组合数公式===(∈N*,,且).5.排列数与组合数的关系.6.单条件排列以下各条的大前提是从个元素中取个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.(3)两组元素各相同的插空个大球个小球排成一列,小球必分开,问有多少种排法?当时,无解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.7.分配问题(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有.8.二项式定理;二项展开式的通项公式.典例1(2024·新课标Ⅱ卷·高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.典例2(2023·新课标Ⅰ卷·高考真题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).典例3(2023·新课标Ⅱ卷·高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有(

).A.种 B.种C.种 D.种典例4(2022·新高考全国Ⅰ卷·高考真题)的展开式中的系数为(用数字作答).典例5(2022·新高考全国Ⅱ卷·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有(

)A.12种 B.24种 C.36种 D.48种【名校预测·第一题】(黑龙江省哈尔滨第三中学校2025届高三下学期第二次模拟数学试题)若在的展开式中,含项的系数为80,则.(用数字作答)【名校预测·第二题】(山东省泰安第一中学2024-2025学年高三下学期4月月考数学试题)二项式的展开式中,常数项为(

)A.24 B.6 C. D.【名校预测·第三题】(黑龙江省哈尔滨市第三中学校2024-2025学年高三第一次模拟试卷)2024年4月26日,神舟十九号与神舟十八号航天员顺利会师中国空间站,激发了全国人民的民族自豪感和爱国热情.齐聚“天宫”的6名宇航员分别是“70后”蔡旭哲、“80后”叶光富、李聪、李广苏,“90后”宋令东、王浩泽.为记录这一历史时刻,大家准备拍一张“全家福”.假设6人站成一排,两位指令长蔡旭哲和叶光富必须站中间,其他两位“80后”彼此不相邻,两位“90后”彼此不相邻,则不同的站法共有(

)A.16种 B.32种 C.48种 D.64种【名校预测·第四题】(辽宁省本溪市高级中学2025届高三下学期4月月考数学试题)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的选择方法共有种(用数字作答)【名校预测·第五题】(河南省郑州外国语学校2024-2025学年高三调研数学试卷)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是(

)A.每人都安排一项工作的不同方法数为54B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是【名师押题·第一题】将两个1,两个3,一个5排成一行,则不同的排法种数为.(用数字作答)【名师押题·第二题】若二项式展开式中的常数项为160,则.【名师押题·第三题】已知的展开式中项的系数为60,则实数的值为.【名师押题·第四题】一个质点从平面直角坐标系的原点出发,每秒末必须等可能向右、或向左、或向上、或向下跳一个单位长度,则此质点在第10秒末到达点的跳法共有种.(用数字作答)【名师押题·第五题】甲、乙等5名志愿者参加2025年文化和旅游发展大会的、、、四项服务工作,要求每名志愿者只能参加1项工作,每项工作至少安排1人,且甲不参加项工作,乙必须参加项工作,则不同的安排方法数有(

)A.36种 B.42种 C.54种 D.72种【名师押题·第六题】为拓展学生数学视野,鼓励学生多读数学书,学校举办了“数学图书在哪”的抽奖活动.如图,在一个5×5的方格表中,按如下规则放置了一些图书,小方格中的数字表示与其有公共顶点的小方格的图书的总本数,且有数字的小方格上没有图书,其余方格内无限制,且每一个方格只能放1本图书.则所有可能的图书排列方式总数为(

)A.160 B.192 C.224 D.256事件与概率、分布列与统计综合(选填题)年份题号分值题干考点2024年新高考I卷96(2024·新课标Ⅰ卷·高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则(

)(若随机变量Z服从正态分布,)B.C.D.指定区间的概率;正态分布的实际应用2024年新高考I卷145(2024·新课标Ⅰ卷·高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.求离散型随机变量的均值;均值的性质;计算古典概型问题的概率2024年新高考II卷45(2024·新课标Ⅱ卷·高考真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表根据表中数据,下列结论中正确的是(

)A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间计算几个数的平均数;计算几个数据的极差、方差、标准差;计算几个数的中位数2023年新高考I卷95(2023·新课标Ⅰ卷·高考真题)有一组样本数据,其中是最小值,是最大值,则(

)A.的平均数等于的平均数B.的中位数等于的中位数C.的标准差不小于的标准差D.的极差不大于的极差计算几个数的中位数;计算几个数的平均数;计算几个数据的极差、方差、标准差2023年新高考II卷125(2023·新课标Ⅱ卷·高考真题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率利用互斥事件的概率公式求概率;独立事件的乘法公式;独立重复试验的概率问题2022年新高考I卷55(2022·新高考全国Ⅰ卷·高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为(

)A.B. C.D.计算古典概型问题的概率;实际问题中的组合计数问题2022年新高考II卷135(2022·新高考全国Ⅱ卷·高考真题)已知随机变量X服从正态分布,且,则.指定区间的概率近三年新高考数学事件与概率、分布列与统计综合选填题考查情况总结​考点:涵盖正态分布实际应用(2024年新课标Ⅰ卷)、古典概型概率计算(2024年新课标Ⅰ卷、2022年新课标Ⅰ卷)、统计量分析(均值、方差、极差、中位数,如2024年新课标Ⅱ卷、2023年新课标Ⅰ卷)、独立事件概率(2023年新课标Ⅱ卷),注重实际情境与概念结合。​题型:以选择题为主,分值5-6分,侧重考查概率统计知识在实际问题中的应用及基本计算能力。2025年新高考事件与概率、分布列与统计综合选填题高考预测​题型与分值:预计为选择题或填空题,分值5-6分。​考查方向:延续正态分布、古典概型、统计量计算的考查,可能结合分布列简单问题,强化实际应用(如生活场景中的概率计算、统计量分析),注重对概念的理解与运算准确性,如根据统计图表分析数据特征,或利用概率公式解决实际问题。等可能性事件的概率.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).独立事件A,B同时发生的概率P(A·B)=P(A)·P(B).个独立事件同时发生的概率P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An).次独立重复试验中某事件恰好发生k次的概率7.离散型随机变量的分布列的两个性质(1);(2).8.数学期望数学期望的性质(1).(2)若~,则.(3)若服从几何分布,且,则.10.方差11.标准差=.12.方差的性质(1);(2)若~,则.(3)若服从几何分布,且,则.13.方差与期望的关系.14.正态分布密度函数,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.15.对于,取值小于x的概率..条件概率条件概率的定义条件概率的性质已知B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为P(A|B).当P(B)>0时,我们有P(A|B)=eq\f(PA∩B,PB).(其中,A∩B也可以记成AB)类似地,当P(A)>0时,A发生时B发生的条件概率为P(B|A)=eq\f(PAB,PA)(1)0≤P(B|A)≤1,(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)P(B|A)与P(A|B)易混淆为等同前者是在A发生的条件下B发生的概率,后者是在B发生的条件下A发生的概率.条件概率的三种求法定义法先求P(A)和P(AB),再由P(B|A)=eq\f(PAB,PA)求P(B|A)基本事件法借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=eq\f(nAB,nA)缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,BΩ=B(A1+A2+…+An)=BA1+BA2+…+BAn,有P(B)=,此公式为全概率公式.(1)计算条件概率除了应用公式P(B|A)=eq\f(P(AB),P(A))外,还可以利用缩减公式法,即P(B|A)=eq\f(n(AB),n(A)),其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.(2)全概率公式为概率论中的重要公式,它将对一个复杂事件A的概率的求解问题,转化为了在不同情况下发生的简单事件的概率的求和问题.贝叶斯公式一般地,设是一组两两互斥的事件,有且,则对任意的事件有数字样本特征众数:在一组数据中出现次数最多的数中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数平均数:,反映样本的平均水平方差:反映样本的波动程度,稳定程度和离散程度;越大,样本波动越大,越不稳定;越小,样本波动越小,越稳定;标准差:,标准差等于方差的算术平方根,数学意义和方差一样极差:等于样本的最大值最小值典例1(2024·新课标Ⅰ卷·高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则(

)(若随机变量Z服从正态分布,)A. B.C. D.典例2(2024·新课标Ⅰ卷·高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.典例3(2024·新课标Ⅱ卷·高考真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表亩产量[900,950)[950,1000)[1000,1050)[1050,1100)[1100,1150)[1150,1200)频数61218302410根据表中数据,下列结论中正确的是(

)A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间典例4(2023·新课标Ⅰ卷·高考真题)有一组样本数据,其中是最小值,是最大值,则(

)A.的平均数等于的平均数B.的中位数等于的中位数C.的标准差不小于的标准差D.的极差不大于的极差典例5(2023·新课标Ⅱ卷·高考真题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【名校预测·第一题】(025届湖南省长沙市雅礼中学高三4月综合自主测试数学试题)语文老师要从10篇课文中随抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某位同学只能背诵其中的6篇,则他能及格的概率是(

)A. B. C. D.【名校预测·第二题】(浙江省杭州学军中学2024-2025学年高三下学期3月月考数学试题)(多选)体育教育既能培养学生自觉锻炼身体的习惯,又能培养学生开拓进取、不畏艰难的坚强性格.杭州学军中学西溪校区高三学生参加体育测试,其中理科班女生的成绩与文科班女生的成绩均服从正态分布,且,则(

)A. B.C. D.【名校预测·第三题】(广东省深圳市高级中学2024-2025学年高三下学期数学试题)(多选)样本数据的平均数是,方差是,极差为,则下列判断正确的是(

)A.若,则的平均数为B.若,则的方差为0C.若的极差是,则D.若,则这组数据的第75百分位数是【名校预测·第四题】(广东省深圳市高级中学2024-2025学年高三下学期数学试题)依次抛掷一枚质地均匀的骰子两次,表示事件“第一次抛掷骰子的点数为2”,表示事件“第一次抛掷骰子的点数为奇数”,表示事件“两次抛掷骰子的点数之和为6”,表示事件“两次抛掷骰子的点数之和为7”,则(

)A.与为对立事件 B.与为相互独立事件C.与为相互独立事件 D.与为互斥事件【名校预测·第五题】(湖北省武汉市华中师范大学第一附属中学数学试题)一只口袋装有形状、大小完全相同的3只小球,其中红球、黄球、黑球各1只.现从口袋中先后有放回地取球2n次,且每次取1只球,X表示2n次取球中取到红球的次数,当为奇数时,;当为偶数时,,则X的数学期望为(用n表示),Y的数学期望为(用n表示).【名师押题·第一题】某市高三年级男生的体重(单位:kg)近似服从正态分布.若,则.【名师押题·第二题】已知互不相等的数据,,,,,,的平均数为,方差为,数据,,,,,的方差为,则(

)A. B.C. D.与的大小关系无法判断【名师押题·第三题】某校食堂为打造菜品,特举办菜品评选活动.已知评委团由家长代表,学生代表和教工代表组成,人数比为,现由评委团对1号菜品和2号菜品进行投票(每人只能投一票且必须投一票).若投票结果显示,家长代表和学生代表中均有的人投票给1号菜品,教工代表中有的人投票给2号菜品,那么,从1号菜品的投票人中任选1人,他是学生代表的概率为(

)A. B. C. D.【名师押题·第四题】有6张卡片,正面分别写有数字1,2,3,4,5,6,且背面均写有数字7.先把这些卡片正面朝上排成一排.规定一次试验:掷一颗均匀的骰子一次,若点数为,则将向上数字为的卡片翻面并放置原处;若没有向上数字为的卡片,则卡片不作翻动.进行上述试验3次,发现卡片朝上的数字之和为偶数,在这一条件下,骰子恰有一次点数为2的概率为(

)A. B. C. D.【名师押题·第五题】为备战乒乓球赛,某体校甲、乙两名主力进行训练,规则如下:两人每轮分别与老师打2局,当两人获胜局数不少于3局时,则认为此轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为,,且满足,每局之间相互独立.记甲、乙在轮训练中训练过关的轮数为,若,则从期望的角度来看,甲、乙两人训练的轮数至少为(

)A.28 B.24 C.32 D.27【名师押题·第六题】人工智能(ArtificialIntelligence),英文缩写为.是新一轮科技革命和产业变革的重要驱动力量,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的科学.某商场在有奖销售的抽奖环节时,采用技术生成奖券码:在每次抽奖时,顾客连续点击按键5次,每次点击随机生成数字0或1或2,点击结束后,生成的5个数字之和即为奖券码.并规定:如果奖券码为0,则获一等奖;如果奖券码为3的正整数倍,则获二等奖,其它情况不获奖.已知顾客甲参加了一次抽奖,则他获二等奖的概率为.复数(选填题)年份题号分值题干考点2024年新高考I卷25(2024·新高考全国Ⅰ卷·高考真题)若,则(

)A. B.C. D.复数的除法运算;复数的乘方2024年新高考II卷15(2024·新课标Ⅱ卷·高考真题)已知,则(

)A.0 B.1C. D.2求复数的模2023年新高考I卷25(2023·新课标Ⅰ卷·高考真题)已知,则(

)A. B.C.0 D.1共轭复数的概念及计算;复数的除法运算2023年新高考II卷15(2023·新课标Ⅱ卷·高考真题)在复平面内,对应的点位于(

).A.第一象限 B.第二象限C.第三象限 D.第四象限在各象限内点对应复数的特征;复数代数形式的乘法运算2022年新高考I卷25(2022·新高考全国Ⅰ卷·高考真题)若,则(

)A. B.C.1 D.2共轭复数的概念及计算2022年新高考II卷25(2022·新高考全国Ⅱ卷·高考真题)(

)A. B.C. D.复数代数形式的乘法运算近三年新高考数学复数选填题考查情况总结​考点:涵盖复数除法、乘方运算(2024年新课标Ⅰ卷)、求模(2024年新课标Ⅱ卷)、共轭复数计算(2023年新课标Ⅰ卷、2022年新课标Ⅰ卷)、复数乘法及象限位置(2023年新课标Ⅱ卷、2022年新课标Ⅱ卷),侧重复数基本运算与概念。​题型:均为选择题,分值5分,注重对复数运算法则(乘、除)、共轭复数、模及几何意义(象限)的考查。2025年新高考复数选填题高考预测​题型与分值:预计为选择题,分值5分。​考查方向:延续对复数乘除运算、共轭复数、模的考查,可能结合复数方程或几何意义(如对应点所在象限),强化对复数基本概念和运算法则的掌握,考查运算准确性与概念理解。虚数单位:,规定虚数单位的周期复数的代数形式:Z=,叫实部,叫虚部复数的分类复数相等:若共轭复数:若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;,复数的几何意义:复数复平面内的点复数的模:,则;典例1(2024·新高考全国Ⅰ卷·高考真题)若,则(

)A. B. C. D.典例2(2024·新课标Ⅱ卷·高考真题)已知,则(

)A.0 B.1 C. D.2典例3(2023·新课标Ⅰ卷·高考真题)已知,则(

)A. B. C.0 D.1典例4(2023·新课标Ⅱ卷·高考真题)在复平面内,对应的点位于(

).A.第一象限 B.第二象限 C.第三象限 D.第四象限典例5(2022·新高考全国Ⅰ卷·高考真题)若,则(

)A. B. C.1 D.2【名校预测·第一题】(贵州省贵阳市第一中学2025届高三下学期数学试卷)复数的虚部是(

)A. B. C. D.【名校预测·第二题】(黑龙江省哈尔滨市第三中学校2024-2025学年高三第一次模拟试卷)复数,则在复平面内对应的点在(

)A.第一象限 B.第二象限C.第三象限 D.第四象限【名校预测·第三题】(辽宁省本溪市高级中学2025届高三下学期4月月考数学试题)已知复数z满足,则(

)A. B.2 C. D.1【名校预测·第四题】(黑龙江省哈尔滨第三中学校2025届高三下学期第二次模拟数学试题)复数,在复平面内对应的点关于直线对称,且(其中i为虚数单位),则复数(

)A. B.1 C. D.【名校预测·第五题】(河北省石家庄市第一中学2025届高三第二次模拟考试数学试题)已知,且,为虚数单位,则的最大值是.【名师押题·第一题】若,则(

)A. B. C. D.2【名师押题·第二题】已知是虚数单位,,则(

)A. B. C.0 D.3【名师押题·第三题】若复数z满足,则z的虚部是(

)A. B. C. D.【名师押题·第四题】复数满足,其中i为虚数单位,则对应的点在复平面的(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限【名师押题·第五题】已知z是方程的一个复数根,则(

)A. B. C. D.【名师押题·第六题】已知复数,(为虚数单位)则的最大值是(

)A.1 B.2 C.3 D.4集合与常用逻辑用语(选填题)年份题号分值题干考点2024年新高考I卷15(2024·新课标Ⅰ卷·高考真题)已知集合,则(

)A. B.C. D.交集的概念及运算;由幂函数的单调性解不等式2024年新高考II卷25(2024·新课标Ⅱ卷·高考真题)已知命题p:,;命题q:,,则(

)A.p和q都是真命题B.和q都是真命题C.p和都是真命题D.和都是真命题全称量词命题的否定及其真假判断;存在量词命题的否定及其真假判断;判断命题的真假2023年新高考I卷15(2023·新课标Ⅰ卷·高考真题)已知集合,,则(

)A. B.C. D.交集的概念及运算;解不含参数的一元二次不等式2023年新高考I卷75(2023·新课标Ⅰ卷·高考真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(

)A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件充要条件的证明;判断等差数列;由递推关系证明数列是等差数列;求等差数列前n项和2023年新高考II卷25(2023·新课标Ⅱ卷·高考真题)设集合,,若,则(

).A.2 B.1C. D.根据集合的包含关系求参数2022年新高考I卷15(2022·新高考全国Ⅰ卷·高考真题)若集合,则(

)A. B.C. D.交集的概念及运算2022年新高考II卷15(2022·新高考全国Ⅱ卷·高考真题)已知集合,则(

)A. B.C. D.交集的概念及运算;公式法解绝对值不等式近三年新高考数学集合与常用逻辑用语选填题考查情况总结​考点:涵盖集合的交集运算(2024年新课标Ⅰ卷、2023年新课标Ⅰ卷、2022年新课标Ⅰ卷、2022年新课标Ⅱ卷)、由集合包含关系求参数(2023年新课标Ⅱ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论