新课标2024高考数学大一轮复习第八章立体几何题组层级快练52直线平面垂直的判定及性质文含解析_第1页
新课标2024高考数学大一轮复习第八章立体几何题组层级快练52直线平面垂直的判定及性质文含解析_第2页
新课标2024高考数学大一轮复习第八章立体几何题组层级快练52直线平面垂直的判定及性质文含解析_第3页
新课标2024高考数学大一轮复习第八章立体几何题组层级快练52直线平面垂直的判定及性质文含解析_第4页
新课标2024高考数学大一轮复习第八章立体几何题组层级快练52直线平面垂直的判定及性质文含解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE8题组层级快练(五十二)1.(2024·广东五校协作体诊断考试)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n答案B解析A项,若α⊥β,m⊂α,n⊂β,则m∥n与m,n与异面直线均有可能,不正确;C项,若m⊥n,m⊂α,n⊂β,则α,β有可能相交但不垂直,不正确;D项,若α∥β,m⊂α,n⊂β,则m,n有可能是异面直线,不正确,故选B.2.设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分不必要条件是()A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥α D.a⊥α,b⊥α答案C解析对于C,在平面α内存在c∥b,因为a⊥α,所以a⊥c,故a⊥b;A,B中,直线a,b可能是平行直线,相交直线,也可能是异面直线;D中肯定推出a∥b.3.(2024·江西南昌模拟)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么D在平面ABC内的射影H必在()A.直线AB上 B.直线BC上C.直线AC上 D.△ABC内部答案A解析由AB⊥AC,BD⊥AC,又AB∩BD=B,则AC⊥平面ABD,而AC⊂平面ABC,则平面ABC⊥平面ABD,因此D在平面ABC内的射影H必在平面ABC与平面ABD的交线AB上,故选A.4.(2024·江西临安一中期末)三棱柱ABC-A1B1C1中,侧棱AA1垂直于底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()①CC1与B1E是异面直线;②AE与B1C1是异面直线,且AE⊥B1C1;③AC⊥平面ABB1A1;④A1C1∥平面AB1E.A.② B.①③C.①④ D.②④答案A解析对于①,CC1,B1E都在平面BB1C1C内,故错误;对于②,AE,B1C1为在两个平行平面中且不平行的两条直线,底面三角形ABC是正三角形,E是BC中点,所以AE⊥BC,又B1C1∥BC,故AE⊥B1C1,故正确;对于③,上底面ABC是一个正三角形,不行能存在AC⊥平面ABB1A1,故错误;对于④,A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故错误.故选A.5.(2024·福建泉州质检)如图,在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是()答案D解析如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,且六点共面,直线BD1与平面EFMNQG垂直,并且A项,B,C中的平面与这个平面重合,满意题意.对于D项中图形,由于E,F为AB,A1B1的中点,所以EF∥BB1,故∠B1BD1为异面直线EF与BD1所成的角,且tan∠B1BD1=eq\r(2),即∠B1BD1不为直角,故BD1与平面EFG不垂直,故选D.6.(2024·保定模拟)如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面PAE D.平面PDE⊥平面ABC答案D解析因BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,A成立;易证BC⊥平面PAE,BC∥DF,所以结论B,C均成立;点P在底面ABC内的射影为△ABC的中心,不在中位线DE上,故结论D不成立.7.已知直线PA垂直于以AB为直径的圆所在的平面,C为圆上异于A,B的任一点,则下列关系中不正确的是()A.PA⊥BC B.BC⊥平面PACC.AC⊥PB D.PC⊥BC答案C解析AB为直径,C为圆上异于A,B的一点,所以AC⊥BC.因为PA⊥平面ABC,所以PA⊥BC.因为PA∩AC=A,所以BC⊥平面PAC,从而PC⊥BC.故选C.8.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE答案C解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.9.(2024·沧州七校联考)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的是()A.CD∥平面PAF B.DF⊥平面PAFC.CF∥平面PAB D.CF⊥平面PAD答案D解析A中,∵CD∥AF,AF⊂面PAF,CD⊄面PAF,∴CD∥平面PAF成立;B中,∵六边形ABCDEF为正六边形,∴DF⊥AF.又∵PA⊥面ABCDEF,∴DF⊥平面PAF成立;C中,CF∥AB,AB⊂平面PAB,CF⊄平面PAB,∴CF∥平面PAB;而D中CF与AD不垂直,故选D.10.(2024·重庆秀山高级中学期中)如图,点E为矩形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有()①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行;③平面ABCE内存在直线与平面SAE平行;④存在点E使得SE⊥BA.A.1个 B.2个C.3个 D.4个答案A解析①若直线SA⊥平面SBC,则SA⊥SC,又SA⊥SE,SE∩SC=S,∴SA⊥平面SEC,又平面SEC∩平面SBC=SC,∴点S,E,B,C共面,与已知冲突,故①错误;②∵平面SBC∩直线SA=S,故平面SBC内的直线与SA相交或异面,故②错误;③在平面ABCD内作CF∥AE,交AB于点F,由线面平行的判定定理,可得CF∥平面SAE,故③正确;④若SE⊥BA,过点S作SF⊥AE于点F,∵平面SAE⊥平面ABCE,平面SAE∩平面ABCE=AE,∴SF⊥平面ABCE,∴SF⊥AB,又SF∩SE=S,∴AB⊥平面SEC,∴AB⊥AE,与∠BAE是锐角冲突,故④错误.11.(2024·泉州模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列命题:①三棱锥A-D1PC的体积不变; ②A1P∥平面ACD1;③DB⊥BC1; ④平面PDB1⊥平面ACD1.其中正确的命题序号是________.答案①②④解析对于①,VA-D1PC=VP-AD1C点P到面AD1C的距离,即为线BC1与面AD1C的距离,为定值故①正确,对于②,因为面A1C1B∥面AD1C,所以线A1P∥面AD1C,故②正确,对于③,DB与BC1成60°角,故③错.对于④,由于B1D⊥面ACD1,所以面B1DP⊥面ACD1,故④正确.12.(2024·山西太原一模)已知在直角梯形ABCD中,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,将直角梯形ABCD沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC的体积取最大值时,其外接球的体积为________.答案eq\f(4,3)π解析当平面DAC⊥平面ABC时,三棱锥D-ABC的体积取最大值.此时易知BC⊥平面DAC,∴BC⊥AD,又AD⊥DC,∴AD⊥平面BCD,∴AD⊥BD,取AB的中点O,易得OA=OB=OC=OD=1,故O为所求外接球的球心,故半径r=1,体积V=eq\f(4,3)πr3=eq\f(4,3)π.13.(2024·辽宁大连双基测试)如图所示,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案eq\f(\r(2),6)解析因为DA⊥平面ABC,所以DA⊥BC,又BC⊥AC,DA∩AC=A,所以BC⊥平面ADC,所以BC⊥AF,又AF⊥CD,BC∩CD=C,所以AF⊥平面DCB,所以AF⊥EF,AF⊥DB,又DB⊥AE,AE∩AF=A,所以DB⊥平面AEF,所以DE为三棱锥D-AEF的高.因为AE为等腰直角三角形ABD斜边上的高,所以AE=eq\r(2),设AF=a,FE=b,则△AEF的面积S=eq\f(1,2)ab≤eq\f(1,2)·eq\f(a2+b2,2)=eq\f(1,2)×eq\f(2,2)=eq\f(1,2),所以三棱锥D-AEF的体积V≤eq\f(1,3)×eq\f(1,2)×eq\r(2)=eq\f(\r(2),6)(当且仅当a=b=1时等号成立).14.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,求证:(1)CD⊥AE;(2)PD⊥平面ABE.答案(1)略(2)略证明(1)∵PA⊥底面ABCD,∴CD⊥PA.又CD⊥AC,PA∩AC=A,故CD⊥平面PAC,AE⊂平面PAC.故CD⊥AE.(2)∵PA=AB=BC,∠ABC=60°,故PA=AC.∵E是PC的中点,故AE⊥PC.由(1)知CD⊥AE,由于PC∩CD=C,从而AE⊥平面PCD,故AE⊥PD.易知BA⊥PD,故PD⊥平面ABE.15.(2024·安徽马鞍山一模)如图①,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E为AD的中点,EF⊥BC,垂足为F.沿EF将四边形ABFE折起,连接AD,AC,BC,得到如图②所示的六面体ABCDEF.若折起后AB的中点M到点D的距离为3.(1)求证:平面ABFE⊥平面CDEF;(2)求六面体ABCDEF的体积.答案(1)略(2)eq\f(8,3)解析(1)如图,取EF的中点N,连接MN,DN,MD.依据题意可知,四边形ABFE是边长为2的正方形,∴MN⊥EF.由题意,得DN=eq\r(DE2+EN2)=eq\r(5),MD=3,∴MN2+DN2=22+(eq\r(5))2=9=MD2,∴MN⊥DN,∵EF∩DN=N,∴MN⊥平面CDEF.又MN⊂平面ABFE,∴平面ABFE⊥平面CDEF.(2)连接CE,则V六面体ABCDEF=V四棱锥C-ABFE+V三棱锥A-CDE.由(1)的结论及CF⊥EF,AE⊥EF,得CF⊥平面ABFE,AE⊥平面CDEF,∴V四棱锥C-ABFE=eq\f(1,3)·S正方形ABFE·CF=eq\f(4,3),V三棱锥A-CDE=eq\f(1,3)·S△CDE·AE=eq\f(4,3),∴V六面体ABCDEF=eq\f(4,3)+eq\f(4,3)=eq\f(8,3).16.(2024·潍坊质检)直四棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.(1)求证:AC⊥平面BB1C1C;(2)在A1B1上是否存在一点P,使得DP与平面BCB1和平面ACB1都平行?证明你的结论.答案(1)略(2)P为A1B1的中点时,DP与平面BCB1和平面ACB1都平行.解析(1)∵直四棱柱ABCD-A1B1C1D1中,BB1⊥平面ABCD,∴BB1⊥AC.又∵∠BAD=∠ADC=90°,AB=2AD=2CD=2,∴AC=eq\r(2),∠CA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论