



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页贵州农业职业学院《机器学习与开发框架》
2023-2024学年第二学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在一个异常检测任务中,如果异常样本的特征与正常样本有很大的不同,以下哪种方法可能效果较好?()A.基于距离的方法,如K近邻B.基于密度的方法,如DBSCANC.基于聚类的方法,如K-MeansD.以上都不行2、机器学习是一门涉及统计学、计算机科学和人工智能的交叉学科。它的目标是让计算机从数据中自动学习规律和模式,从而能够进行预测、分类、聚类等任务。以下关于机器学习的说法中,错误的是:机器学习算法可以分为监督学习、无监督学习和强化学习三大类。监督学习需要有标注的训练数据,无监督学习则不需要标注数据。那么,下列关于机器学习的说法错误的是()A.决策树是一种监督学习算法,可以用于分类和回归任务B.K均值聚类是一种无监督学习算法,用于将数据分成K个聚类C.强化学习通过与环境的交互来学习最优策略,适用于机器人控制等领域D.机器学习算法的性能只取决于算法本身,与数据的质量和数量无关3、假设正在研究一个语音合成任务,需要生成自然流畅的语音。以下哪种技术在语音合成中起到关键作用?()A.声码器B.文本到语音转换模型C.语音韵律模型D.以上技术都很重要4、假设要对一个时间序列数据进行预测,例如股票价格的走势。数据具有明显的趋势和季节性特征。以下哪种时间序列预测方法可能较为合适?()A.移动平均法B.指数平滑法C.ARIMA模型D.以上方法都可能适用,取决于具体数据特点5、假设正在开发一个用于情感分析的深度学习模型,需要对模型进行优化。以下哪种优化算法在深度学习中被广泛使用?()A.随机梯度下降(SGD)B.自适应矩估计(Adam)C.牛顿法D.共轭梯度法6、考虑一个推荐系统,需要根据用户的历史行为和兴趣为其推荐相关的商品或内容。在构建推荐模型时,可以使用基于内容的推荐、协同过滤推荐或混合推荐等方法。如果用户的历史行为数据较为稀疏,以下哪种推荐方法可能更合适?()A.基于内容的推荐,利用商品的属性和用户的偏好进行推荐B.协同过滤推荐,基于用户之间的相似性进行推荐C.混合推荐,结合多种推荐方法的优点D.以上方法都不合适,无法进行有效推荐7、假设要对大量的文本数据进行主题建模,以发现潜在的主题和模式。以下哪种技术可能是最有效的?()A.潜在狄利克雷分配(LDA),基于概率模型,能够发现文本中的潜在主题,但对短文本效果可能不好B.非负矩阵分解(NMF),将文本矩阵分解为低秩矩阵,但解释性相对较弱C.基于词向量的聚类方法,如K-Means聚类,但依赖于词向量的质量和表示D.层次聚类方法,能够展示主题的层次结构,但计算复杂度较高8、假设我们要使用机器学习算法来预测股票价格的走势。以下哪种数据特征可能对预测结果帮助较小()A.公司的财务报表数据B.社交媒体上关于该股票的讨论热度C.股票代码D.宏观经济指标9、在进行模型压缩时,以下关于模型压缩方法的描述,哪一项是不准确的?()A.剪枝是指删除模型中不重要的权重或神经元,减少模型的参数量B.量化是将模型的权重进行低精度表示,如从32位浮点数转换为8位整数C.知识蒸馏是将复杂模型的知识转移到一个较小的模型中,实现模型压缩D.模型压缩会导致模型性能严重下降,因此在实际应用中应尽量避免使用10、考虑一个时间序列预测问题,数据具有明显的季节性特征。以下哪种方法可以处理这种季节性?()A.在模型中添加季节性项B.使用季节性差分C.采用季节性自回归移动平均(SARIMA)模型D.以上都可以11、考虑一个回归问题,我们要预测房价。数据集包含了房屋的面积、房间数量、地理位置等特征以及对应的房价。在选择评估指标来衡量模型的性能时,需要综合考虑模型的准确性和误差的性质。以下哪个评估指标不仅考虑了预测值与真实值的偏差,还考虑了偏差的平方?()A.平均绝对误差(MAE)B.均方误差(MSE)C.决定系数(R²)D.准确率(Accuracy)12、假设要开发一个疾病诊断的辅助系统,能够根据患者的医学影像(如X光、CT等)和临床数据做出诊断建议。以下哪种模型融合策略可能是最有效的?()A.简单平均多个模型的预测结果,计算简单,但可能无法充分利用各个模型的优势B.基于加权平均的融合,根据模型的性能或重要性分配权重,但权重的确定可能具有主观性C.采用堆叠(Stacking)方法,将多个模型的输出作为新的特征输入到一个元模型中进行融合,但可能存在过拟合风险D.基于注意力机制的融合,动态地根据输入数据为不同模型分配权重,能够更好地适应不同情况,但实现较复杂13、深度学习是机器学习的一个重要分支,它利用深度神经网络进行学习。以下关于深度学习的说法中,错误的是:深度神经网络具有多层结构,可以自动学习数据的特征表示。深度学习在图像识别、语音识别等领域取得了巨大的成功。那么,下列关于深度学习的说法错误的是()A.卷积神经网络是一种专门用于处理图像数据的深度神经网络B.循环神经网络适用于处理序列数据,如文本、时间序列等C.深度神经网络的训练需要大量的计算资源和时间D.深度学习算法可以自动学习到最优的特征表示,不需要人工设计特征14、在机器学习中,模型的可解释性是一个重要的方面。以下哪种模型通常具有较好的可解释性?()A.决策树B.神经网络C.随机森林D.支持向量机15、特征工程是机器学习中的重要环节。以下关于特征工程的说法中,错误的是:特征工程包括特征提取、特征选择和特征转换等步骤。目的是从原始数据中提取出有效的特征,提高模型的性能。那么,下列关于特征工程的说法错误的是()A.特征提取是从原始数据中自动学习特征表示的过程B.特征选择是从众多特征中选择出对模型性能有重要影响的特征C.特征转换是将原始特征进行变换,以提高模型的性能D.特征工程只在传统的机器学习算法中需要,深度学习算法不需要进行特征工程16、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数17、某机器学习项目需要对文本进行情感分类,同时考虑文本的上下文信息和语义关系。以下哪种模型可以更好地处理这种情况?()A.循环神经网络(RNN)与注意力机制的结合B.卷积神经网络(CNN)与长短时记忆网络(LSTM)的融合C.预训练语言模型(如BERT)微调D.以上模型都有可能18、在机器学习中,模型的可解释性也是一个重要的问题。以下关于模型可解释性的说法中,错误的是:模型的可解释性是指能够理解模型的决策过程和预测结果的能力。可解释性对于一些关键领域如医疗、金融等非常重要。那么,下列关于模型可解释性的说法错误的是()A.线性回归模型具有较好的可解释性,因为它的决策过程可以用公式表示B.决策树模型也具有一定的可解释性,因为可以通过树形结构直观地理解决策过程C.深度神经网络模型通常具有较低的可解释性,因为其决策过程非常复杂D.模型的可解释性和性能是相互矛盾的,提高可解释性必然会降低性能19、集成学习是一种提高机器学习性能的方法。以下关于集成学习的说法中,错误的是:集成学习通过组合多个弱学习器来构建一个强学习器。常见的集成学习方法有bagging、boosting和stacking等。那么,下列关于集成学习的说法错误的是()A.bagging方法通过随机采样训练数据来构建多个不同的学习器B.boosting方法通过逐步调整样本权重来构建多个不同的学习器C.stacking方法将多个学习器的预测结果作为新的特征输入到一个元学习器中D.集成学习方法一定比单个学习器的性能更好20、假设正在开发一个用于推荐系统的深度学习模型,需要考虑用户的短期兴趣和长期兴趣。以下哪种模型结构可以同时捕捉这两种兴趣?()A.注意力机制与循环神经网络的结合B.多层感知机与卷积神经网络的组合C.生成对抗网络与自编码器的融合D.以上模型都有可能二、简答题(本大题共3个小题,共15分)1、(本题5分)简述机器学习在口腔正畸学中的方案制定。2、(本题5分)简述在智能应急管理中,机器学习的作用。3、(本题5分)机器学习中如何进行模型的选择和比较?三、应用题(本大题共5个小题,共25分)1、(本题5分)运用回归模型预测水力发电的发电量。2、(本题5分)借助图书馆学数据优化图书管理和服务。3、(本题5分)利用传染病学数据预测传染病的传播和制定防控措施。4、(本题5分)通过消化系统疾病数据研究胃肠道疾病
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年计算机二级VB考试的重点回顾及试题及答案
- VB语言应用场景试题及答案分析
- 2025年零售企业数字化供应链协同与物流配送优化报告
- 法学概论考试的重要实践环节与试题及答案
- 2025年软件设计师考试心理准备策略试题及答案
- 行政法律问题的调研方法试题及答案
- 网络故障处理指南试题及答案
- 赞助政府协议书
- 2025年养老服务中心设施智能化改造投资成本评估报告
- 3方监管协议书
- 深度解剖华为虚拟股权激励方案(含持股比例)
- 肥厚型心肌病-课件
- 肺结核-护理查房
- 初中 初二 物理 流体压强与流速的关系 教学设计
- 医院检验科实验室生物安全管理委员会及工作职责
- 福建省市政基础设施工程竣工验收报告(附件2)
- 市政工程监理规划范本(完整版)
- 艾里逊自动变速箱针脚图PPT通用课件
- 交管12123驾照学法减分题库及答案共155题(完整版)
- 食品物性学-第二章 食品力学性质和流变学基础
- 斜屋面瓦安装施工及方案
评论
0/150
提交评论