




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届齐齐哈尔市重点中学数学八下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤22.下列根式中,与3是同类二次根式的是()A.18B.24C.27D.303.在平面直角坐标中,点P(1,﹣3)关于x轴的对称点坐标是()A.(1,﹣3) B.(﹣1,3) C.(﹣1,﹣3) D.(1,3)4.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x
B.y=5x
C.y=100x
D.y=0.05x+1005.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.a2+c2=b2 B.c2=2a2 C.a=b D.∠C=90°6.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2 B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)7.如图,□ABCD中,E为BC边上一点,且AE交DC延长线于F,连接BF,下列关于面积的结论中错误的是()A.S△ABF=S△ADE B.S△ABF=S△ADFC.S△ABF=S□ABCD D.S△ADE=S□ABCD8.对于实数,我们规定表示不大于的最大整数,例如,,,若,则的取值可以是()A. B. C. D.9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米1.501.601.651.701.751.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.6510.四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题(每小题3分,共24分)11.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.12.关于x的方程ax﹣2x﹣5=0(a≠2)的解是_____.13.如图,在等腰梯形中,∥,,⊥,则∠=________.14.(-4)2的算术平方根是________
64的立方根是
_______15.计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.16.如图所示,△ABC为等边三角形,D为AB的中点,高AH=10cm,P为AH上一动点,则PD+PB的最小值为_______cm.17.已知a=﹣,b=+,求a2+b2的值为_____.18.已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.三、解答题(共66分)19.(10分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.(1)求直线DE的函数关系式;(2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;(3)在(2)的条件下,求出四边形OHFG的面积.20.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.21.(6分)如图,平行四边形AEFG的顶点G在平行四边形ABCD的边CD上,平行四边形ABCD的顶点B在平行四边形AEFG的边EF上.求证:□ABCD=□AEFG22.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线与直线l1,l2,分别交于点C,D,垂足为点E,设点E的坐标为(a,0)若线段CD长为2,求a的值.23.(8分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC=4,求菱形的周长.24.(8分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数人数(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.25.(10分)如图,在中,,,垂足分别为.求证四边形是矩形.26.(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD求作:点P,使∠PBC=∠PCB,且点P到AD和DC的距离相等.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.2、C【解析】试题分析:A.18=32与B.24=26与C.27=33与D.30与3被开方数不同,故不是同类二次根式.故选C.考点:同类二次根式.3、D【解析】∵点P(m,n)关于x轴对称点的坐标P′(m,−n),∴点P(1,−3)关于x轴对称的点的坐标为(1,3).故选D.4、B【解析】试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.因此,y=100×0.05x,即y=5x.故选B.考点:函数关系式.5、A【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.【详解】设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.【点睛】考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.6、C【解析】
解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.7、B【解析】
根据△ABF与△ABC等底同高,△ADE与△ADC等底同高,结合平行四边形的性质可得S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,问题得解.【详解】解:∵AB∥CD,AD∥BC,∴△ABF与△ABC等底同高,△ADE与△ADC等底同高∴S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,∴S△ABF=S△ADE,∴A,C,D正确;∵S△ADF=S△ADE+S△DEF,S△ABF=S△ADE,∴S△ADF>S△ABF,∴B不正确;故选B.【点睛】本题考查了平行四边形的性质、三角形面积的计算等知识,熟练掌握同底等高的三角形面积相等是解决问题的关键.8、B【解析】
先根据表示不大于的最大整数,列出不等式组,再求出不等式组的解集即可判断.【详解】解:根据题意得:,解得:,故选:B.【点睛】此题考查了一元一次不等式组的应用,关键是理解表示不大于的最大整数,列出不等式组,求出不等式组的解集.9、A【解析】
1、回忆位中数和众数的概念;2、分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;3、根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.2,
所以中位数是1.2,
同一成绩运动员最多的是1.1,共有4人,
所以,众数是1.1.
因此,众数与中位数分别是1.1,1.2.
故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.10、D【解析】
根据四边形对角线相等且互相垂直,运用三角形中位线平行于第三边证明四个角都是直角且邻边相等,判断是正方形【详解】解:如图:∵E、F、G、H分别为各边中点,
∴EF∥GH∥DB,EF=GH=DB,
EH=FG=AC,EH∥FG∥AC,∴四边形EFGH是平行四边形,
∵DB⊥AC,
∴EF⊥EH,∴四边形EFGH是矩形.同理可证EH=AC,∵AC=BD,∴EH=EF∴矩形EFGH是正方形,
故选:D.【点睛】本题考查的是中点四边形,解题时,主要是利用了三角形中位线定理的性质,比较简单,也可以利用三角形的相似,得出正确结论.二、填空题(每小题3分,共24分)11、x>1.【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),∴由图象可得,当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、【解析】
利用解一元一次方程的一般步骤解出方程.【详解】ax﹣2x﹣5=0(a﹣2)x=5x=,故答案为:.【点睛】本题考查了一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.13、60°【解析】
利用平行线及∥,证明,再证明,再利用直角三角形两锐角互余可得答案.【详解】解:因为:∥,所以:因为:,所以:,所以;,因为:等腰梯形,所以:,设:,所以,因为:⊥,所以:,解得:所以:.故答案为:.【点睛】本题考查等腰梯形的性质,等腰三角形的性质及平行线的性质,掌握相关性质是解题关键.14、4,4【解析】【分析】根据算术平方根和立方根的意义可求解.【详解】因为42=16,43=64,所以,(-4)2的算术平方根是4,
64的立方根是4.故答案为:(1).4,(2).4【点睛】本题考核知识点:算术平方根,立方根.解题关键点:理解算术平方根,立方根的定义.15、π+2【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.16、10【解析】
连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.【详解】连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为:10【点睛】考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.17、1【解析】
把已知条件代入求值.【详解】解:原式==.故答案是:1.【点睛】直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.18、(﹣4,0).【解析】
根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.【详解】∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,∴直线y=kx+b的解析式为:y=x+2,令y=0,则0=x+2,解得:x=﹣4,∴直线y=kx+b与x轴的交点坐标为(﹣4,0).故答案为:(﹣4,0).【点睛】本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.三、解答题(共66分)19、(1)直线DE的函数关系式为:y=﹣x+8;(2)点F的坐标为;(4,4);m=;(3)18.【解析】试题分析:(1)由顶点B的坐标为(6,4),E为AB的中点,可求得点E的坐标,又由过点D(8,0),利用待定系数法即可求得直线DE的函数关系式;(2)由(1)可求得点F的坐标,又由函数y=mx﹣2的图象经过点F,利用待定系数法即可求得m值;(3)首先可求得点H与G的坐标,即可求得CG,OC,CF,OH的长,然后由S四边形OHFG=S梯形OHFC+S△CFG,求得答案.解:(1)设直线DE的解析式为:y=kx+b,∵顶点B的坐标为(6,4),E为AB的中点,∴点E的坐标为:(6,2),∵D(8,0),∴,解得:,∴直线DE的函数关系式为:y=﹣x+8;(2)∵点F的纵坐标为4,且点F在直线DE上,∴﹣x+8=4,解得:x=4,∴点F的坐标为;(4,4);∵函数y=mx﹣2的图象经过点F,∴4m﹣2=4,解得:m=;(3)由(2)得:直线FH的解析式为:y=x﹣2,∵x﹣2=0,解得:x=,∴点H(,0),∵G是直线DE与y轴的交点,∴点G(0,8),∴OH=,CF=4,OC=4,CG=OG﹣OC=4,∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.20、解:(1)yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yA>yB时,27x+270>30x+240,得x<10;当yA<yB时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,yA=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.21、证明见解析.【解析】分析:连接BG,作AM⊥EF,垂足M,作AN⊥CD,垂足N.根据三角形的面积公式证明ABCD=△ABG,AEFG=ABG即可证明结论.详解:连接BG,作AM⊥EF,垂足M,作AN⊥CD,垂足N.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵,,∴,∴ABCD=△ABG,同理可证:AEFG=ABG,∴□ABCD=□AEFG.点睛:本题考查了平行四边形的性质,等底同高的三角形面积相等,正确作出辅助线,证明ABCD=△ABG,AEFG=ABG是解答本题的关键.22、(1)b=3,m=1;(2)或【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=.(2)当x=a时,yC=2a+1,yD=4a.∵CD=2,∴|2a+1(4a)|=2,解得:a=或a=.∴a的值为或.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外资保险公司中国区资深理赔员全职聘用合同
- 国际工程承包法律风险防范协议
- 冷链物流运输与智能监控系统合作协议
- 抖音智慧城市智慧环保合作协议
- 固态电池安全标准制定与执行合同
- 智能在线教育课程退费争议快速响应协议
- 肝硬化护理要点
- 血液透析护理病人
- 金属矿产投资咨询合同(2篇)
- 癫痫手术的护理
- 国有企业内部审计工作制度
- 2025宿迁辅警考试题库
- 健康生活方式指导手册含饮食、运动
- 2025年森林管护员考试题及答案
- 未成年人学校保护规定的国际比较研究
- 研究院内部科技成果转化的管理流程
- 中考语文试卷名著专题汇编《钢铁是怎样炼成的》文段赏析题(截至2024年)
- 2019建筑排水管道安装塑料管道19S406
- KCA试题库完美版
- 2024年中国扁平吊装带市场调查研究报告
- 2024年10月自考中级财务会计试题及答案解析
评论
0/150
提交评论