




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省盐城市东台市三仓片区八年级数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.函数中自变量x的取值范围是()A. B. C. D.2.下列方程中是关于的一元二次方程的是()A. B. C. D.3.某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得()A. B.C. D.4.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30° B.35° C.40° D.45°5.如图,在菱形中,对角线、相交于点,下列结论中不一定成立的是()A. B. C. D.6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元7.学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是()A.甲、乙 B.甲、丙 C.乙、丙、丁 D.甲、乙、丙、丁8.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1 B.2 C.3 D.49.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.2110.2018年一季度,华为某销公营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30% B.1+xC.1+2x=1+22%1+30%11.下列事件中,属于必然事件的是()A.某校初二年级共有480人,则至少有两人的生日是同一天B.经过路口,恰好遇到红灯C.打开电视,正在播放动画片D.抛一枚硬币,正面朝上12.下列变形中,正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.14.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.15.如图,在边长为的菱形中,,是边的中点,是对角线上的动点,连接,,则的最小值______.16.将函数y=12x-2的图象向上平移_____个单位后,所得图象经过点(0,17.如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且,则=________度18.一次函数y=2x-1的图象在轴上的截距为______三、解答题(共78分)19.(8分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.20.(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:(1)(2)21.(8分)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.22.(10分)如图,在四边形中,,,,,,点从点出发,以的速度沿运动,点从点出发的同时,点从点出发,以的速度向点运动,当点到达点时,点也停止运动,设点、运动的时间为秒,从运动开始,当取何值时,?23.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?24.(10分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.(1)求a、b及k的值;(2)连接OA,OB,求△AOB的面积.25.(12分)2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)冲锋舟从A地到C地的时间为分钟,冲锋舟在静水中的速度为千米/分,水流的速度为千米/分.(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地千米处与救生艇第二次相遇,求k、b的值.26.作平行四边形ABCD的高CE,B是AE的中点,如图.(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.(2)如果BE:CE=1:,BC=3cm,求AB.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:根据二次根式的意义,被开方数是非负数.所以1﹣x≥0,解得x≤1.故选B.考点:函数自变量的取值范围.2、D【解析】
只含有一个未知数,并且未知数的项的最高次数是2,且等号两边都是整式的方程是一元二次方程,根据定义依次判断即可得到答案.【详解】A、等式左边不是整式,故不是一元二次方程;B、中a=0时不是一元二次方程,故不符合题意;C、整理后的方程是2x+5=0,不符合定义故不是一元二次方程;D、整理后的方程是,符合定义是一元二次方程,故选:D.【点睛】此题考查一元二次方程的定义,正确理解此类方程的特点是解题的关键.3、D【解析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.【详解】根据题意,得.故选:.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.4、B【解析】
由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.【详解】解:由旋转可知,∠BAD=110°,AB=AD∴∠B=∠ADB,∠B=(180°-110°)2=35°,故选B.【点睛】本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.5、D【解析】
根据菱形的性质即可一一判断【详解】解:∵四边形是菱形,∴,,,故A、B、C正确,故选:D.【点睛】本题考查菱形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.6、A【解析】
众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.7、D【解析】
根据正方形的判定方法进行解答即可.正方形的判定定理有:对角线相等的菱形;对角线互相垂直的矩形;对角线互相垂直平分且相等的四边形.【详解】解:甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;有一个角为直角的菱形的特征是:四条边都相等,四个角都是直角,则该菱形是正方形.故说法正确;
乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;有一组邻边相等的矩形的特征是:四条边都相等,四个角都是直角.则该矩形为正方形.故说法正确;
丙同学说:判定四边形的对角线相等,并且互相垂直平分;对角线相等且互相垂直平分的四边形是正方形.故说法正确;
丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形.故说法正确;
故选D.【点睛】本题考查正方形的判定定理,熟记这些判定定理才能够正确做出判断.8、B【解析】
根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【详解】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选B.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9、C【解析】
由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.【详解】∵AE⊥BE,且AE=3,BE=4,∴在Rt△ABE中,AB3=AE3+BE3=35,∴S阴影部分=S正方形ABCD﹣S△ABE=AB3﹣×AE×BE=35﹣×3×4=3.故选C.考点:3.勾股定理;3.正方形的性质.10、D【解析】
利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.【详解】解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:a1+x2,此a(1+22%)(1+30%)=a1+x2,即故选择:D.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11、A【解析】A.某校初二年级共有480人,则至少有两人的生日是同一天;属于必然事件;B.经过路口,恰好遇到红灯;属于随机事件;C.打开电视,正在播放动画片;属于随机事件;D.抛一枚硬币,正面朝上;属于随机事件。故选A.12、D【解析】
根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【点睛】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.二、填空题(每题4分,共24分)13、.【解析】
将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.【详解】如图,将绕着点逆时针旋转,得到,连接,,,,,,,是等边三角形当点,点,点,点共线时,有最小值,故答案为:.【点睛】本题考查三点共线问题,正确画出辅助线是解题关键.14、2【解析】
根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
所以这5个数据分别是x,y,2,1,1,且x<y<2,
当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
所以这组数据可能的最大的和是0+1+2+1+1=2.
故答案为:2.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.15、【解析】
根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点,据此可以作对称点,找到最小值.【详解】解:连接AE.∵四边形ABCD为菱形,∴点C、A关于BD对称,∴PC=AP,∴PC+EP=AP+PE,∴当P在AE与BD的交点时,AP+PE最小,∵E是BC边的中点,∴BE=1,∵AB=2,B=60°,∴AE⊥BC,此时AE最小,为,最小值为.【点睛】本题考查了线段之和的最小值,熟练运用菱形的性质是解题的关键.16、3【解析】
根据一次函数平移“上加下减”,即可求出.【详解】解:函数y=12图象需要向上平移1-(-2)=3个单位才能经过点(0,1).故答案为:3.【点睛】本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.17、72或【解析】分析:分两种情况讨论,分别构建方程即可解决问题.详解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x.∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;若EC=EB时,则有∠EBC=∠C=2x.∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,②EA=EB时,同法可得∠C=72°.综上所述:∠C=72°或.故答案为72°或.点睛:本题考查了平行四边形的性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18、-1【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.【详解】解:∵一次函数y=2x-1中b=-1,∴图象在轴上的截距为-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.三、解答题(共78分)19、证明步骤见解析【解析】
过E分别做CF和DC延长线的垂线,垂足分别是G,H,利用HL证明Rt△FGE≌Rt△DHE,得到∠GFE=∠EDH,再根据三角形内角和得出∠FED=∠FCD=90°,即证明.【详解】解:如图,过E分别做CF和DC延长线的垂线,垂足分别是G,H,∵AC=CD,AC⊥CD,∴∠CAD=∠CDA=∠ACB=∠BCH=45°,∵EG⊥CF,EH⊥CH,∴EH=EG,∵DE=EF,∴Rt△FGE≌Rt△DHE(HL),∴∠GFE=∠EDH,∵∠FME=∠DMC∴∠FED=∠FCD=90°,∴EF⊥ED.【点睛】本题考查了全等三角形的判定和性质,三角形内角和,中等难度,证明三角形全等是解题关键.20、①;②【解析】
(1)逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab即可.(2)逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab即可.【详解】(1)x2-7x-18=(x+2)(x-9);(2)x2+12xy-13y2=(x+13y)(x-y).【点睛】本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.21、见解析【解析】
解:结论:四边形ABCD是平行四边形证明:∵DF∥BE∴∠AFD=∠CEB又∵AF=CEDF=BE,∴△AFD≌△CEB(SAS)∴AD=CB∠DAF=∠BCE∴AD∥CB∴四边形ABCD是平行四边形22、当时,【解析】
首先判定当时,四边形PDCQ是平行四边形,然后利用其性质PD=QC,构建方程,即可得解.【详解】当时,四边形PDCQ是平行四边形,此时PD=QC,∴∴∴当时,.【点睛】此题主要考查利用平行四边形的性质构建方程,即可解题.23、(1)80;60;(2)①甲种服装最多购进75件;②当时,购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,购进甲种服装65件,乙种服装35件.【解析】
(1)设乙服装的进价y元/件,则甲种服装进价为(y+20)元/件,根据题意列方程即可解答;(2)①设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式组解答即可;②首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设乙服装的进价y元/件,则甲种服装进价为元/件,根据题意得:,解得,即甲种服装进价为80元/件,乙种服装进价为60元/件;故答案为80;60;(2)①设计划购买件甲种服装,则购买件乙种服装,根据题意得,解得,甲种服装最多购进75件;②设总利润为元,购进甲种服装件.则,且,当时,,随的增大而增大,故当时,有最大值,即购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,,随的增大而减少,故当时,有最大值,即购进甲种服装65件,乙种服装35件.【点睛】本题考查了分式方程的应用,一次函数的应用,依据题意列出方程是解题的关键.24、(1)a=,b=2,k=-2;(2)S△AOB=【解析】
(1)把A、B两点坐标代入直线解析式求出a,b的值,从而确定A、B两点坐标,再把A(或B)点坐标代入双曲线解析式求出k的值即可;(2)设直线AB分别交x轴、y轴于点E,F,根据S△AOB=S△EOF-S△AEO-S△BFO求解即可.【详解】(1)将点A(-4,a)、B(-1,b)分别代入表达式中,得:;,∴A(-4,)、B(-1,2)将B(-1,2)代入y=中,得k=-2所以a=,b=2,k=-2(2)设直线AB分别交x轴、y轴于点E,F,如图,对于直线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学几何试题及答案
- 屋面大修可行性研究报告
- 测评试题及答案
- 大专力学试题及答案
- 操作第4套试题及答案
- 持续创新推动生产绩效提升计划
- 全面提升管理效率的策略计划
- 深化业务理解的成长计划
- 人事部健康管理与员工关怀计划
- 中医科工作总结与传统医学推广计划
- 防刷单诈骗知识讲座
- 《术前肠道准备》课件
- 失能老人消防应急预案
- JGJ114-2014 钢筋焊接网混凝土结构技术规程
- 毕业设计220kv变电站电气一次部份设计
- JGT501-2016 建筑构件连接处防水密封膏
- 实验 验证牛顿第二定律
- 钻孔水文地质工程地质综合编录一览表模板
- 海外政策手册(2):国别研究沙特经济转型与中沙合作机遇
- 二年级上册心理健康教育说课稿-面对批评 全国通用
- 工程管理检讨书
评论
0/150
提交评论