




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京栖霞区2025年八下数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,直线与交于点,则不等式的解集为()A. B. C. D.2.下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是()A. B.C. D.3.将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.4.在下列交通标志中,是中心对称图形的是()A. B.C. D.5.下面四个手机的应用图标中,是中心对称图形的是()A. B. C. D.6.小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是().A. B. C. D.7.下列说法中错误的是()A.“买一张彩票中奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“投掷一枚骰子点数为8”是确定事件8.一直角三角形两边分别为5和12,则第三边为()A.13 B. C.13或 D.79.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B. C.2 D.10.下面四个多项式中,能进行因式分解的是()A.x2+y2 B.x2﹣y C.x2﹣1 D.x2+x+1二、填空题(每小题3分,共24分)11.如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.12.已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1y2(填“>”或“<”或“=”).13.已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)14.如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.15.若分式的值是0,则x的值为________.16.如图,在中,,分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______17.若分式方程有增根,则a的值是__________________.18.抛物线,当时,的取值范围是__________.三、解答题(共66分)19.(10分)家乐商场销售某种衬衣,每件进价100元,售价160元,平均每天能售出30件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1元,其销量就增加3件.商场想要使这种衬衣的销售利润平均每天达到3600元,每件衬衣应降价多少元?20.(6分)银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.21.(6分)某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表:班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.22.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图象,直接写出当-4<x<1(x≠0)时,y的取值范围;(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.23.(8分)(阅读材料)解方程:.解:设,则原方程变为.解得,,.当时,,解得.当时,,解得.所以,原方程的解为,,,.(问题解决)利用上述方法,解方程:.24.(8分)(1)因式分解:4m2-9n2;(2)先化简,再求值:,其中x=225.(10分)如图,在正方形内任取一点,连接,在⊿外分别以为边作正方形和.⑴.按题意,在图中补全符合条件的图形;⑵.连接,求证:⊿≌⊿;⑶.在补全的图形中,求证:∥.26.(10分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,(1)写出y甲,y乙与x的函数关系式.(2)学生人数在什么情况下,选择哪个旅行社合算?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
观察函数图象得到,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,由此得到不等式x+3>mx+n的解集.【详解】解:∵直线L1:y=x+3与L2:y=mx+n交于点A(-1,b),
从图象可以看出,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,
∴不等式x+3>mx+n的解集为:x>-1,
故选:D.【点睛】本题考查一次函数与一元一次不等式的关系,关键是从函数图象中找出正确信息.2、C【解析】
根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.【详解】A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;故选:C.【点睛】本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.3、B【解析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.【详解】解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.【点睛】本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.4、C【解析】
解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C5、D【解析】
根据中心对称图形的定义即可求解.【详解】由图可知D为中心对称图形,故选D.【点睛】此题主要考查中心对称图形的定义,解题的关键是熟知中心对称图形的特点.6、C【解析】
根据在每段中,离家的距离随时间的变化情况即可进行判断.【详解】图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.
故选:C.【点睛】本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.7、A【解析】
直接利用概率的意义以及事件的确定方法分别分析得出答案.【详解】A、“买一张彩票中奖”发生的概率是0,错误,符合题意;B、“软木塞沉入水底”发生的概率是0,正确,不合题意;C、“太阳东升西落”发生的概率是1,正确,不合题意;D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;故选:A.【点睛】此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.8、C【解析】
此题要考虑两种情况:当所求的边是斜边时;当所求的边是直角边时.【详解】由题意得:当所求的边是斜边时,则有=1;当所求的边是直角边时,则有=.故选:C.【点睛】本题考查了勾股定理的运用,难度不大,但要注意此类题的两种情况,很多学生只选1.9、C【解析】试题分析:∵菱形ABCD的边长为1,∴AD=AB=1,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=1,则对角线BD的长是1.故选C.考点:菱形的性质.10、C【解析】
根据因式分解的定义对各选项分析后利用排除法求解.【详解】A、x2+y2不能进行因式分解,故本选项错误;B、x2-y不能进行因式分解,故本选项错误;C、x2-1能利用平方差公式进行因式分解,故本选项正确;D、x2+x+1不能进行因式分解,故本选项错误.故选C.【点睛】本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.二、填空题(每小题3分,共24分)11、1或.【解析】
分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.【详解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①当CG=BC=时,AG=AC=CG=3-,∴AP=AG=.②当GC=GB时,易知GC=1,AG=2,∴AP=AG=1,故答案为1或.【点睛】本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题12、<.【解析】试题分析:∵正比例函数的,∴y随x的增大而增大.∵,∴y1<y1.考点:正比例函数的性质.13、【解析】
由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.【详解】解:∵∠ACB=90°,
∴AC2+BC2=AB2,
∴S1+S2=S3,故答案为:=.【点睛】本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.14、【解析】首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.解:如图所示,过E作EM⊥AC,已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),故选B.“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.15、3【解析】
根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.16、2或2;【解析】
根据等面积法,首先计算AC边上的高,再设AD的长度,列方程可得x的值,进而计算AB.【详解】根据可得为等腰三角形分别是的中点,且四边形是菱形所以可得中AC边上的高为:设AD为x,则CD=所以解得x=或x=故答案为2或2【点睛】本题只要考查菱形的性质,关键在于设合理的未知数求解方程.17、1【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.【详解】方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=1.故答案为:1.【点睛】本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.18、【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴,判断范围内函数的增减性,进而计算y的范围.【详解】解:根据二次函数的解析式可得由a=2>0,可得抛物线的开口向上对称轴为:所以可得在范围内,二次函数在,y随x的增大而减小,在上y随x的增大而增大.所以当取得最小值,最小值为:当取得最大值,最大值为:所以故答案为【点睛】本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.三、解答题(共66分)19、1元【解析】
设每件衬衣降价x元,根据商场平均每天盈利数=每件的盈利×售出件数列出方程求解即可.【详解】解:设每件衬衣降价x元,依题意,得:(160﹣100﹣x)(1+3x)=3600,整理,得:x2﹣50x+600=0,解得:x1=20,x2=1,∵为了尽快减少库存,∴x=1.答:每件衬衣应降价1元.【点睛】本题考查一元二次方程的应用,商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.20、(1)每件童装应定价80元.(2)当降价15元,即以85元销售时,最高利润值达1250元.【解析】
(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,根据每件盈利×销售量=每天盈利,列方程求解,求出x的值,并根据题意“扩大销售量,减少内存”选择正确的定价.(2)设每天销售这种童装利润为y,利用上述关系式列出函数关系式,利用配方法即可求出何时有最高利润以及最高利润【详解】(1)设每件童装应降价x元,由题意得:(100−60−x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100−60−x)(20+2x)=−2x2+60x+800=−2(x−15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【点睛】此题考查了二次函数的应用以及一元二次方程的应用,利用函数关系和基本的数量关系列方程求解是本题的关键.21、(1)九(1)的平均数为85,众数为85,九(2)班的中位数是80;(2)九(1)班成绩好些,分析见解析;(3)=70,=100【解析】
(1)先根据条形统计图得出每个班5名选手的复赛成绩,然后平均数按照公式,中位数和众数按照概念即可得出答案;(2)对比平均数和中位数,平均数和中位数大的成绩较好;(3)按照方差的计算公式计算即可.【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;(2)九(1)班成绩好些.因为两个班平均分相同,但九(1)班的中位数高,所以九(1)班成绩好些.(3)==70==100【点睛】本题主要考查数据的统计与分析,掌握平均数,中位数,众数和方差是解题的关键.22、(1)①12,②y<-3或y>12;(2)1【解析】
(1)①根据点A的横坐标是4,可以求得点A的纵坐标,从而可以求得k的值;②根据反比例函数的性质,可以写出y的取值范围;(2)根据点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,灵活变化,可以求得点A的坐标,从而可以求得k的值.【详解】解:(1)①将x=4代入y=x得,y=3,∴点A(4,3),∵反比例函数y=(k>0)的图象与一次函数y=x的图象交于A点,∴3=,∴k=12;②∵x=-4时,y==-3,x=1时,y==12,∴由反比例函数的性质可知,当-4<x<1(x≠0)时,y的取值范围是y<-3或y>12;(2)设点A为(a,),则OA==,∵点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,∴OA=OB=OC=,∴S△ACB==10,解得,a=,∴点A为(2,),∴=,解得,k=1,即k的值是1.【点睛】本题考查一次函数与反比例函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23、,,,【解析】
先变形,再仿照阅读材料换元,求出m的值,再代入求出x即可.【详解】解:原方程变为.设,则原方程变为.解得,,.当时,,解得当时,,解得或3.所以,原方程的解为,,,.【点睛】本题考查解一元二次方程和解高次方程,能够正确换元是解此题的关键.24、(1)(2)2【解析】
(1)根据平方差公式因式分解即可.(2)首先将其化简,在代入计算即可.【详解】(1)(2)代入x=2,原式=【点睛】本题主要考查因式分解,这是基本知识,应当熟练掌握.25、(1)补全图形见解析;(2)证明见解析;(3)证明见解析.【解析】分析:⑴问要注意“在⊿外”作正方形;本题的⑵问根据正方形的性质得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料力学与智能制造工艺重点基础知识点
- 材料疲劳裂纹扩展数据处理原理重点基础知识点
- 集合概念的实际应用试题及答案
- 常见火灾事故应急预案(3篇)
- 行政法学知识点梳理与试题及答案汇编
- 低压室火灾应急预案(3篇)
- 发展战略与市场预测的关系试题及答案
- 火灾扑灭瞬间应急预案(3篇)
- 计算机程序设计入门考试题及答案
- 2025软考网络运营管理试题及答案
- 信贷准入资格考试练习测试题附答案
- 中国农业发展史
- 2024年山东省德州市中考地理试题卷
- T∕CACE 0118-2024 改性磷石膏混合料道路稳定基层应用技术规程
- 员工投诉与申诉处理机制
- 20以内加减法口算练习题带括号填空135
- 《黑神话:悟空》IP营销全景解析
- 良好卫生规范验证记录
- 2024年安徽马鞍山中考数学试题及答案1
- DL∕T 722-2014 变压器油中溶解气体分析和判断导则
- 三级公立医院绩效考核微创手术目录(2022版)
评论
0/150
提交评论