




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原市第一中学2025届八下数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等C.若,则D.有一角对应相等的两个菱形相似2.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则()A. B. C. D.3.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种4.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD5.如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是()A.6 B.8 C. D.96.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.77.如图,在△ABC中,点D、E分别是AB、AC的中点、DE=3,那么BC的长为()A.4 B.5 C.6 D.78.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A. B. C. D.9.下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为()A.1B.2C.3D.410.某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(1)2小时血液中含药量最高,达每毫升6微克.(2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.(3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()A.0 B.1C.2 D.3二、填空题(每小题3分,共24分)11.一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.12.计算:=___________.13.如图,第、、、…中分别有“小正方形”个、个、个、个…,则第幅图中有“小正方形”__________个.(1)(2)(3)(4)14.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是____小时.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.16.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(AC>BC).已知AB=10cm,则AC的长约为__________cm.(结果精确到0.1cm)17.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.18.命题“对角线相等的四边形是矩形”的逆命题是_____________.三、解答题(共66分)19.(10分)已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.20.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.(1)画出关于轴的对称图形,并写出其顶点坐标;(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.21.(6分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点.(1)直接写出点C的坐标,C______(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.22.(8分)如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2km,BB′=4km,且A′B′=8km.(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.(2)求这个最短距离.23.(8分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.24.(8分)(1)计算:;(2)先化简,再求值:(-4)÷,其中x=1.25.(10分)已知关于x的方程x2-(m+1)x+2(m-1)=0,(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.26.(10分)如图,平行四边形ABCD中,点E为AB边上一点,请你用无刻度的直尺,在CD边上画出点F,使四边形AECF为平行四边形,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
A错误,对顶角相等,但相等的角不一定是对顶角.B错误,两直线平行时,内错角相等.C错误,当m和n互为相反数时,,但m≠n.故选D2、B【解析】
根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.3、C【解析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.4、C【解析】
要使四边形ABCD是菱形,根据题中已知条件四边形ABCD的对角线互相平分可以运用方法“对角线互相垂直平分的四边形是菱形”或“邻边相等的平行四边形是菱形”,添加AC⊥BD或AB=BC.【详解】∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∴要使四边形ABCD是菱形,需添加AC⊥BD或AB=BC,故选:C.【点睛】考查了菱形的判定方法,关键是熟练把握菱形的判定方法①定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直平分的平行四边形是菱形.具体选择哪种方法需要根据已知条件来确定.5、B【解析】
根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.【详解】解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,
∴CD=AD=BD=10,
∵S△CAD=30,CE⊥AB,垂足为E,
∴S△CAD=AD•CE=30
∴CE=6,
∴DE=故选B.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.6、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.7、C【解析】
根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【详解】解:∵D、E分别是AB、AC的中点.
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=3,
∴BC=2×3=1.
故选:C.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.8、C【解析】试题解析:A、不是轴对称图形,也不是中心对称图形;
B、不是轴对称图形,不是中心对称图形;
C、是轴对称图形,也是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选C.点睛:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、D【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;③算术平方根还可能是1,故算术平方根一定是正数结论错误;④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,错误的结论①②③④,故选D.【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.10、D【解析】
通过观察图象获取信息列出函数解析式,并根据一次函数的性质逐一进行判断即可。【详解】解:由图象可得,服药后2小时内,血液中的含药量逐渐增多,在2小时的时候达到最大值,最大值为每毫升6微克,故(1)是正确的;设当0≤x≤2时,设y=kx,∴2k=6,解得k=3∴y=3x当y=4时,x=设直线AB的解析式为y=ax+b,得解得a=-;b=∴y=-x+当y=4时,x=∴每毫升血液中含药量不低于4微克的时间持续-小时,故(2)正确把y=0代入y=-x+得x=18前一天下午六点到第二天上午12点时间为18小时,所以(3)正确。故正确的说法有3个.故选:D【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(每小题3分,共24分)11、1【解析】
根据23,32,18,x,12,它的中位数是20,可求出x的值,再根据平均数的计算方法计算得出结果即可.【详解】解:∵23,32,18,x,12,它的中位数是20,∴x=20,平均数为:(23+32+18+20+12)÷5=1,故答案为:1.【点睛】本题考查中位数、平均数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.12、【解析】
解:2-=故答案为:13、109【解析】
仔细观察图形的变化规律,利用规律解答即可.【详解】解:观察发现:第(1)个图中有1×2-1=1个小正方形;第(2)个图中有2×3-1=5个小正方形;第(3)个图中有3×4-1=11个小正方形;第(4)个图中有4×5-1=19个小正方形;…第(10)个图中有10×11-1=109个小正方形;故答案为109.【点睛】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.14、6.4【解析】试题分析:体育锻炼时间=(小时).考点:加权平均数.15、【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.16、6.2【解析】
根据黄金分割的计算公式正确计算即可.【详解】∵点C分线段AB近似于黄金分割点(AC>BC),∴AC=,∵AB=10cm,∴AC=,故答案为:6.2.【点睛】此题考查黄金分割点的计算公式,正确掌握公式是解题的关键.17、或﹣.【解析】
试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x,CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.【点睛】考点:动点问题.18、矩形的对角线相等【解析】
根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.【详解】原命题的条件是:对角线相等的四边形,结论是:矩形;则逆命题为矩形的对角线相等.【点睛】此题主要考查对逆命题的理解,熟练掌握,即可解题.三、解答题(共66分)19、BD=2,S菱形ABCD=2.【解析】
先根据菱形的性质得出AB=BC=2,AO=CO,BO=DO,AC⊥BD,然后证明△ABC是等边三角形,进而求出AC的长度,再利用勾股定理即可得出BD的长度,最后利用S菱形ABCD=AC×BD即可求出面积.【详解】∵菱形ABCD的周长为8,∴AB=BC=2,AO=CO,BO=DO,AC⊥BD,.∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC=2,∴AO=1.,∴BO==,∴BD=,∴S菱形ABCD=AC×BD=2.【点睛】本题主要考查菱形的性质,勾股定理,掌握菱形的性质是解题的关键.20、(1)图详见解析,;(2)图详见解析,【解析】
(1)分别作出,,的对应点,,即可.(2)分别作出,,的对应点,,即可.【详解】解:(1)△如图所示.,,;(2)△如图所示.,,.【点睛】本题考查轴对称变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)C4,4;(2)y=43x-43;(3)点F的坐标是【解析】
(1)根据A(8,0)B(0,8),点C为线段AB的中点即可得到C点坐标;(2)由OD=1,故D(1,0),再由C点坐标用待定系数法即可求解;(3)根据A、C、D的坐标及平行四边形的性质作图分三种情况进行求解【详解】解:(1)∵A(8,0)B(0,8),点C为线段AB的中点∴C(2)由已知得点D的坐标为1,0,设直线CD的解析式是y=ax+b,则a+b=04a+b=4,解得a=∴直线CD的解析式是y=4(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形,①如图1,∵CF平行且等于DA,相当于将点C向右平移7个单位,故点F的坐标是11,4.②如图2,∵AF∥CD,∴AF所在的直线解析式为y=4把A(8,0)代入解得AF所在的直线的解析式是y=4根据A(8,0),B(0,8)求出AB直线的解析式为y=-x+8,∵DF∥AB,∴DF所在的直线解析式为y=-x+b把D(1,0)代入y=-x+b2求得DF所在的直线的解析式是联立y=43x-323y=-x+1,解得:③如图3,当CF平行且等于AD时,相当于将点C向左平移7个单位,故点F的坐标是-3,4.综上,可得点F的坐标是11,4,5,-4,-3,4.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法求解析式及平行四边形的性质.22、这个最短距离为10km.【解析】分析:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.(2)作CD⊥BB1的延长线于D,在Rt△BCD中,利用勾股定理求出BC即可;详解:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.(2)作CD⊥BB1的延长线于D,在Rt△BCD中,BC==10,∴PA+PB的最小值=PB+PC=BC=10(km).点睛:本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.23、(1)见解析;(2)AE=;(3)(3),理由见解析.【解析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE=GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;(3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到,可知∥,再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN是正方形,∴AM=AN∠AMC=∠N=90°∴△AMC,△AND是Rt△∵△ABC是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt△AMC≌Rt△AND(HL)(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=则AE=GE=易得△GBE是等腰直角三角形∴BG=EG=∴AB=BC=易得∠DHF=30°∴HD=2DF=,HF=∴BF=BH+HF=∵Rt△AMC≌Rt△AND(HL)∴易得CF=DF=∴BC=BF-CF=∴∴∴AE=(3);理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌,∴,∴∥,∴∵∴∴,∵∴≌(SAS)∴∴∴是等腰直角三角形∴∴∴【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播平台流量分成与电商平台合作合同
- 深海地质勘探专利许可与技术升级改造协议
- 电商企业进口退税担保及税务风险管理合同
- 古钱币鉴定设备租赁与品牌授权与售后服务协议
- 大数据技术入股合作框架协议
- 大数据股权收益权转让与数据分析合作协议
- 美团外卖平台餐饮商家线上订单处理协议
- 离婚协议在线电子签署及履行监督协议
- 工业自动化生产线传感器设备采购、安装及维护服务合同
- 介入治疗和护理
- 2023年商务部直属事业单位招聘笔试真题
- 【MOOC】创业管理-江苏大学 中国大学慕课MOOC答案
- 施工项目部材料管理制度
- 薪酬福利经理年度述职报告
- 深邃的世界:西方绘画中的科学学习通超星期末考试答案章节答案2024年
- 2024年大学本科课程教育心理学教案(全册完整版)
- 配音基础知识课件
- 卡西欧手表EFA-120中文使用说明书
- -小学英语人称代词与物主代词讲解课件(共58张课件).课件
- 超市经营服务方案投标方案(技术标)
- 孟万金编制的中国大学生积极心理品质量表+评分方式
评论
0/150
提交评论