




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省金昌市永昌市第五中学八年级数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.函数中,自变量x的取值范围是()A.x>-1 B.x>1 C.x≠-1 D.x≠02.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.②④ B.②③ C.①④ D.①③3.某运动员进行赛前训练,如果对他30次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道这10次成绩的().A.众数 B.方差 C.平均数 D.中位数4.下面各组变量的关系中,成正比例关系的有()A.人的身高与年龄B.买同一练习本所要的钱数与所买本数C.正方形的面积与它的边长D.汽车从甲地到乙地,所用时间与行驶速度5.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<26.设直角三角形的两条直角边分别为a和b,斜边长为c,已知,,则()A.3 B.4 C.5 D.87.如图,在直角三角形ABC中,AC=8,BC=6,∠ACB=90°,点E为AC的中点,点D在AB上,且DE⊥AC于E,则CD=()A.3 B.4 C.5 D.68.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.209.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.1010.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,, C.6,8,10 D.9,12,1511.若分式有意义,则实数的取值范围是()A.x=2 B.x=-2 C.x≠2 D.x≠-212.点E是正方形ABCD对角线AC上,且EC=2AE,Rt△FEG的两条直角边EF、EG分别交BC、DC于M、N两点,若正方形ABCD的边长为a,则四边形EMCN的面积()A.a2 B.a2 C.a2 D.a2二、填空题(每题4分,共24分)13.大型古装历史剧《那年花开月正圆》火了“晋商”一词,带动了晋商文化旅游的发展.图是清代某晋商大院艺术窗的一部分,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为________cm.14.不等式的正整数解有______个15.如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).16.如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.17.如图,△OAB的顶点A在双曲线y=(x>0)上,顶点B在双曲线y=-(x<0)上,AB中点P恰好落在y轴上,则△OAB的面积为_____.18.定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.三、解答题(共78分)19.(8分)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,AB=16,BC=12,CD=1.动点M从点C出发,沿射线CD方向以每秒2个单位长的速度运动;动点N从B出发,在线段BA上,以每秒1个单位长的速度向点A运动,点M、N分别从C、B同时出发,当点N运动到点A时,点M随之停止运动.设运动时间为t(秒).(1)设△AMN的面积为S,求S与t之间的函数关系式,并确定t的取值范围;(2)当t为何值时,以A、M、N三点为顶点的三角形是等腰三角形?20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.21.(8分)如图,正方形的对角线交于点,直角三角形绕点按逆时针旋转,(1)若直角三角形绕点逆时针转动过程中分别交两边于两点①求证:;②连接,那么有什么样的关系?试说明理由(2)若正方形的边长为2,则正方形与两个图形重叠部分的面积为多少?(不需写过程直接写出结果)22.(10分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大.请将他们的探究过程补充完整.(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;(2)上述函数表达式中,自变量x的取值范围是____________;(3)列表:x…0.511.522.533.5…y…1.7533.7543.753m…写出m=____________;(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;(5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.23.(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB`C,连结B`D.结论1:△AB`C与▱ABCD重叠部分的图形是等腰三角形;结论2:B`D∥AC;(1)请证明结论1和结论2;(应用与探究)(2)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB`C,连接B`D若以A、C、D、B`为顶点的四边形是正方形,求AC的长(要求画出图形)24.(10分)甲乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做300个所用的时间与乙做200个所用的时间相等,求甲乙两人每小时各做几个零件?25.(12分)如图,在等腰中,,D为底边BC延长线上任意一点,过点D作,与AC延长线交于点E.则的形状是______;若在AC上截取,连接FB、FD,判断FB、FD的数量关系,并给出证明.26.先化简分式,后在,0,1,2中选择一个合适的值代入求值.
参考答案一、选择题(每题4分,共48分)1、C【解析】
该函数是分式,分式有意义的条件是分母不等于2,故分母x+1≠2,解得x的范围.【详解】根据题意得:x+1≠2解得:x≠-1.故选:C.【点睛】本题主要考查函数自变量的取值范围和分式有意义的条件,分式有意义的条件是分母不能为2.2、C【解析】
分别利用概率的意义分析得出答案.【详解】①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;
②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;
③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;
④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.
故选C.【点睛】此题主要考查了概率的意义,正确理解概率的意义是解题关键.3、B【解析】
根据众数、平均数、中位数、方差的概念分析.【详解】众数、平均数、中位数是反映一组数据的集中趋势,只有方差是反映数据的波动大小的,故为了判断成绩是否稳定,需要知道的是方差.故选:B.【点睛】本题考查统计量的选择,明确各统计量的概念及意义是解题关键.4、B【解析】
判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【详解】解:A、人的身高与年龄不成比例,故选项错误;B、单价一定,买同一练习本所要的钱数与所买本数成正比例,故选项正确;C、正方形的面积与它的边长不成比例,故选项错误;D、路程一定,所用时间与行驶速度成反比例,故选项错误;故选:B.【点睛】考查了正比例函数的定义,此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5、B【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.6、B【解析】
根据勾股定理,直接计算即可得解.【详解】根据勾股定理,得故答案为B.【点睛】此题主要考查勾股定理的运用,熟练掌握,即可解题.7、C【解析】
根据勾股定理先求出AB的长度,利用角关系得出等腰△ACD及等腰△BCD,得出CD=BD=AD=12AB=【详解】如图∵AC=8,BC=6,∠ACB=90°∴AB=A∵点E为AC的中点,DE⊥AC于E∴ED垂直平分AC∴AD=CD∴∠1=∠2∵∠ACB=90°∴∠1+∠4=∠2+∠3=90°∴∠3=∠4∴CD=BD∴CD=BD=AD=12AB=故选:C【点睛】本题考查了勾股定理及等腰三角形的性质和判定,掌握由角关系推出线关系是解题的关键.8、A【解析】
由勾股定理可得AB的长,继而得到菱形ABCD的周长.【详解】因为菱形ABCD中,AC=10,BD=24,所以OB=12,OA=5.在直角三角形ABO中,AB=,所以菱形ABCD的周长=4AB=52,故答案为A.【点睛】本题考查勾股定理和菱形的性质,解题的关键是掌握勾股定理和菱形的性质.9、D【解析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.10、B【解析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.【详解】A.,能组成直角三角形,故此选项错误;B.,不能组成直角三角形,故此选项正确;C.,能组成直角三角形,故此选项错误;D.,能组成直角三角形,故此选项错误;故选:B.【点睛】本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11、D【解析】
根据分式有意义分母不能为零即可解答.【详解】∵分式有意义,∴x+2≠0,∴x≠-2.故选:D.【点睛】本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.12、D【解析】
根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L,只要证明,则可计算.【详解】解:根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L.四边形ABCD为正方形EL=EK为直角三角形故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线.二、填空题(每题4分,共24分)13、7【解析】
根据勾股定理的几何意义可得正方形S的面积,继而根据正方形面积公式进行求解即可.【详解】根据勾股定理的几何意义,可知S=SE+SF=SA+SB+SC+SD=49cm2,所以正方形S的边长为=7cm,故答案为7.【点睛】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.14、3【解析】
根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得解集,再确定其正整数解即可.【详解】去括号,得:3x+3≥5x-3,移项,得:3x-5x≥-3-3,合并同类项,得:-2x≥-6,系数化为1,得:x≤3,∴该不等式的正整数解为:1,2,3,共有3个,故答案为:3【点睛】本题考查了解一元一次不等式以及求一元一次不等式的正整数解,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15、()【解析】
设出大树原来高度,用勾股定理建立方程求解即可.【详解】设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.故答案为:().【点睛】本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.16、【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=9+m,MN=n,CM=9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,从而可得CN=-(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得-2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.【详解】如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,∵∠CAD=2∠BAE,∴∠BAE=∠DAM,∵四边形ABCD是矩形,∴AB=CD=9,∠B=∠D=90°,AD=BC,∴△ABE∽△ADM,∴AB:AD=BE:DM,又∵AM=AM,∴△ADM≌△ANM,∴AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,∵AB:AD=BE:DM,∴,即9n=m(9+m),∵∠B=90°,∴AC=,∴CN=AC-AN=-(9+m),在Rt△CMN中,CM2=CN2+MN2,即(9-n)2=n2+[-(9+m)]2,∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,又∵9n=m(9+m),∴81-2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,即-2m(9+m)=2(9+m)2-2(9+m),∴=9+2m,∴92+(9+m)2=(9+2m)2,即m2+6m-27=0,解得m=3或m=-9(舍去),∴AE=,故答案为:.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.17、5.【解析】
分别作BC⊥y轴于点C,AD⊥y轴于点D,由P为AB的中点,得到S△ADP=S△BCP,在由A,B都在反比例函数上得到面积,转换即可【详解】如图分别作BC⊥y轴于点C,AD⊥y轴于点D,∵P为AB的中点,∴S△ADP=S△BCP,则S△ABO=S△BOC+S△OAC,∵A在双曲线y=(x>0)上,顶点B在双曲线y=-(x<0)上,∴S△BOC=2,S△OAD=3,则S△ABO=5,故答案为5【点睛】熟练掌握反比例函数上的点与坐标轴和原点围成的三角形面积为|k|和面积转换是解决本题的关键18、【解析】
根据新定义列出不等式即可求解.【详解】依题意得-3x+5≤11解得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.三、解答题(共78分)19、(1);(2)t=3.5或t=【解析】
(1)过点M作MH⊥AB,垂足为H,用含的代数式表示的长,再利用三角形面积公式即可得到答案.(2)先用含的代数式分别表示的长,进行分类讨论,利用腰相等建立方程求解.【详解】(1)如图,过点M作MH⊥AB,垂足为H,则四边形BCMH为矩形.∴MH=BC=2.∵AN=16-t,∴;(2)由(1)可知:BH=CM=2t,BN=t,.以A、M、N三点为顶点的三角形是等腰三角形,可以分三种情况:①若MN=AN.因为:在Rt△MNH中,,所以:MN2=t2+22,由MN2=AN2得t2+22=(16-t)2,解得t=.②若AM=AN.在Rt△MNH中,AM2=(16-2t)2+22.由AM2=AN2得:,即3t2-32t+144=4.由于△=,∴3t2-32t+144=4无解,∴.③若MA=MN.由MA2=MN2,得t2+22=(16-2t)2+22整理,得3t2-64t+256=4.解得,t2=16(舍去)综合上面的讨论可知:当t=秒或t=秒时,以A、M、N三点为顶点的三角形是等腰三角形.【点睛】本题考察的是梯形通过作辅助线化成直角三角形的问题与等腰三角形存在性问题,掌握分类讨论是解题的关键.20、(1)证明见解析;(2)∠ADO==36°.【解析】
(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.【详解】(1)∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO.∴AO=OD.又∵AC=AO+OC=2AO,BD=BO+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.【点睛】本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.21、(1)①见解析;②垂直且相等,理由见解析;(2)面积为1。【解析】
(1)①证出△DOM≌∠CON,证出;②证明△MDC≌△BCN得CM=BN,证明△GCN∽△MDC得BN⊥CM;(2)因为△DOM≌∠CON,所以正方形与两个图形重叠部分为△DOC的面积.【详解】(1)①∵正方形的对角线交于点∴∠ADO=∠ACDOD=OC∠DOC=90°②∵∠DOC=90°∴∠MOD+∠DON=90°,∠NOD+∠CON=90°∴∠DOM=∠CON∵∠DOM=∠CON∠ADO=∠ACDOD=OC∴△DOM≌∠CON∴②设BN交CM于点G∵正方形ABCD∴DC=BC∠ADC=∠DCB∵△DOM≌∠CON∴DM=CN∴△MDC≌△BCN∴CM=BN∠CMD=∠BNC∵∠CMD=∠BNC∠MCD=∠MCD∴△GCN∽△MDC∴∠NGC=∠ADC∴BN⊥CM∴垂直且相等(2)面积为1.【点睛】本题考查的是图形的旋转和全等,熟练掌握全等三角形和相似三角形是解题的关键.22、见解析【解析】
(1)根据矩形的周长表示出另一边长,然后利用矩形面积公式即可求得y与x间的关系式;(2)根据矩形周长以及边长大于0即可求得;(3)把x=3.5代入(1)中的解析式即可求得m的值;(4)按从左到右的顺序用平滑的曲线进行画图即可;(5)观察图象即可得.【详解】(1)因为矩形一边长为x,则另一边长为(-x)=(4-x),依题意得:矩形的面积y=x(4-x),即y=-x2+4x,故答案为:-x2+4x;(2)由题意得,解得:0<x<4,故答案为:0<x<4;(3)当x=3.5时,y=-3.52+4×3.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据库的安全性与管理策略试题及答案
- 托儿所火灾应急预案范文(3篇)
- 软件设计师考试核心试题及答案解析
- 计算机软件考试常见错误分析
- 行政管理社会服务试题及答案总结
- 便捷复习的试题及答案高效利用
- 企业财务健康状况与战略制定的关系试题及答案
- 高考数学难题攻略与答案
- 法学概论的重要概念归纳与试题及答案
- 2025年网络安全架构与运营考察试题及答案
- 漆房外协协议书
- 数据库应用技术-第三次形考作业(第10章~第11章)-国开-参考资料
- 2023年小学科学实验知识竞赛试题库含答案
- MOOC 颈肩腰腿痛中医防治-暨南大学 中国大学慕课答案
- 板式换热器、半容积式换热器换热器面积计算表(自动计算)
- 工程测量收费标准
- 通用造价35kV~750kV线路(国网)课件
- Unit 1 Lesson 1 Lifestyles 课件 高中英语新北师大版必修第一册(2022-2023学年)
- 村级组织权力清单、责任清单和负面清单x
- 高一化学第二学期期末考试试题
- PID控制经典PPT
评论
0/150
提交评论