




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省亳州市蒙城县八下数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1 B.2 C.3 D.42.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A. B. C. D.3.若二次根式在实数范围内有意义,则a的取值范围是()A. B. C.a>1 D.a<14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.105.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm6.下列二次根式中,属于最简二次根式的是(
)A. B. C. D.7.若腰三角形的周长是,则能反映这个等腰三角形的腰长(单位:)与底边长(单位:)之间的函数关系式的图象是()A. B.C. D.8.平行四边形边长为和,其中一内角平分线把边长分为两部分,这两部分是()A.和 B.和 C.和 D.和9.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A. B. C. D.10.在□ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为().A.8cm B.10cm C.11cm D.12cm11.如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为()A.4 B.3 C.2.5 D.512.下列说法正确的是()A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B.某蓝球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C.“明天我市会下雨”是随机事件D.若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖二、填空题(每题4分,共24分)13.如图,函数和的图象交于点,根据图象可知,关于的不等式的解集为________.14.已知一次函数y=(m﹣1)x﹣m+2的图象与y轴相交于y轴的正半轴上,则m的取值范围是_____.15.如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.16.直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.17.如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.18.已知直线经过点,则直线的图象不经过第__________象限.三、解答题(共78分)19.(8分)已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(0,4).(1)求此一次函数的解析式;(2)当y=-5时求x的值;(3)求此函数图象与两坐标轴所围成的三角形的面积.20.(8分)已知y+2与3x成正比例,当x=1时,y的值为4.(1)求y与x之间的函数表达式;(2)若点(-1,a),(2,b)是该函数图象上的两点,请利用一次函数的性质比较a,b的大小.21.(8分)如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,矩形OABC沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.(1)求直线OB的解析式及线段OE的长;(2)求直线BD的解析式及点E的坐标;(3)若点P是平面内任意一点,点M是直线BD上的一个动点,过点M作轴,垂足为点N,在点M的运动过程中是否存在以P、N、E、O为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.22.(10分)已知:如图,在▱ABCD中,AD=4,AB=8,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求四边形AGBD的面积.23.(10分)如图,是平行四边形的对角线,,分别交于点.求证:.24.(10分)解不等式组,并把它的解集在数轴上表示出来.25.(12分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.26.如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据三角形中位线定理得到BC=2DE,AB=2AD,AC=2AE,再通过计算,得到答案.【详解】∵DE是△ABC的中位线,∴DE=BC,AD=AB,AE=AC,即AB=2AD,BC=2DE,AC=2AE,∵△ADE的周长=AD+DE+AE=1,∴△ABC的周长=AB+BC+AC=2(AD+DE+AE)=2,故选B.【点睛】本题考查的是三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.2、B【解析】试题分析:∵一次函数y=kx+b的图象经过一、二、四象限∴k<0,b>0∴直线y=bx-k经过一、二、三象限考点:一次函数的性质3、A【解析】分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.详解:由题意得:a-1≥0,解得:a≥1,故选A.点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4、B【解析】
解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.5、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.6、C【解析】
满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.7、D【解析】
根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.【详解】解:根据题意,x+2y=10,所以,,
根据三角形的三边关系,x>y-y=0,x<y+y=2y,所以,x+x<10,解得x<5,所以,y与x的函数关系式为(0<x<5),纵观各选项,只有D选项符合.故选D.【点睛】本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.8、C【解析】
作出草图,根据角平分线的定义求出∠BAE=45°,然后判断出△ABE是等腰直角三角形,然后求出BE=AB,再求出CE即可得解.【详解】解:如图,∵AE平分∠BAD,
∴∠BAE=45°,
又∵∠B=90°,
∴△ABE是等腰直角三角形,
∴BE=AB=10cm,
∴CE=BC-AB=15-10=5cm,
即这两部分的长为5cm和10cm.
故选:C.【点睛】本题考查了矩形的性质,角平分线的定义,熟记性质判断出△ABE是等腰直角三角形是解题的关键.9、B【解析】如图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,∠NEK=∠MEL,EN=EM,∠ENK=∠EML,∴△ENK≌△ENL(ASA).∴阴影部分的面积始终等于正方形面积的,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.10、C【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=11,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD的周长22厘米,∴AD+CD=11,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11cm.
故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.11、C【解析】
利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵,点是的中点,∴AD=BD=CD=AB=1,∵BF=DF,BE=EC,∴EF=CD=2.1.故选:C.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.12、C【解析】解:A.若你在上一个路口遇到绿灯,则在下一路口不一定遇到红灯,故本选项错误;B.某蓝球运动员2次罚球,投中一个,这是一个随机事件,但不能断定他罚球命中的概率一定为50%,故本选项错误;C.明天我市会下雨是随机事件,故本选项正确;D.某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故该选项错误.故选C.二、填空题(每题4分,共24分)13、x>−1【解析】
利用函数图象,写出直线y=ax+b在直线y=ax+b上方所对应的自变量的范围即可.【详解】解:由图可知,不等式kx>ax+b的解集为:x>−1.
故答案为:x>−1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14、m<2且m≠1【解析】
根据一次函数图象与系数的关系得到m-1≠0,-m+2>0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得m-1≠0,-m+2>0,
解得m<2且m≠1.
故答案为m<2且m≠1.【点睛】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).15、【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,,即DF=3,在直角三角形FHE中,16、y=﹣2x﹣2【解析】
根据“左加右减,上加下减”的平移规律即可求解.【详解】解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.故答案为.【点睛】本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.17、【解析】
根据旋转的性质,即可求出的度数.【详解】旋转,,,,.故答案为:.【点睛】本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.18、四【解析】
根据题意求出b,再求出直线即可.【详解】∵直线经过点,∴b=3∴∴不经过第四象限.【点睛】本题考查的是一次函数,熟练掌握一次函数的图像是解题的关键.三、解答题(共78分)19、(1)y=2x+4;(2);(3)4.【解析】试题分析:(1)把点A、B的坐标代入列方程组求得的值即可求得一次函数的解析式;(2)把代入(1)中所求得的解析式中,解方程可求得对应的的值;(3)由解析式求得直线与轴的交点坐标,结合点B和原点就可求得直线与坐标轴围成的三角形的面积.试题解析:(1)将A(-3,-2),B(0,4)分别代入y=kx+b得,解得:,∴一次函数的解析式为:y=2x+4.(2)在y=2x+4中,当y=-5时,2x+4=-5,解得x=-4.5;(3)设直线和x轴交于点C,∵在y=2x+4中,当y=0时,2x+4=0,解得x=-2,∴点C(-2,0),∴OC=2,又∵OB=4,∴S△OBC=OBOC=.点睛:一次函数图象与坐标轴围成的三角形就是以图象与两坐标轴的交点和原点为顶点的直角三角形,因此只需由解析式求出图象与两坐标轴的交点坐标即可求此三角形的面积.20、(1)y=6x-2;(2)a<b.【解析】试题分析:(1)由y+2与3x成正比例,设y+2=3kx(k≠0).将x=1,y=4代入求出k的值,确定出y与x的函数关系式;(2)由函数图象的性质来比较a、b的大小.试题解析:(1)根据题意设y+2=3kx(k≠0).将x=1,y=4代入,得4+2=3k,解得:k=2.所以,y+2=6x,所以y=6x−2;(2)a<b.理由如下:由(1)知,y与x的函数关系式为y=6x−2.∴该函数图象是直线,且y随x的增大而增大,∵−1<2,∴a<b.21、(1),OE=4;(2),;(3)存在,点M的坐标为或或或【解析】
利用待定系数法求出k,再利用勾股定理求出OB,由折叠求出,即可得出结论;利用勾股定理求出点D坐标,利用待定系数法求出直线BD的解析式,最后用三角形的面积公式求出点E的横坐标,即可得出结论;分两种情况,利用菱形的性质求出点N坐标,进而得出点M的横坐标,代入直线BD解析式中,即可得出结论.【详解】解:设直线OB的解析式为,将点代入中,得,,直线OB的解析式为,四边形OABC是矩形,且,,,,,根据勾股定理得,,由折叠知,,;设,,由折叠知,,,在中,,根据勾股定理得,,,,,,设直线BD的解析式为,,∴6k`+5=8∴K`=直线BD的解析式为,由知,直线OB的解析式为,设点,根据的面积得,,,;由知,,以P、N、E、O为顶点的四边形是菱形,当OE是菱形的边时,,或,Ⅰ、当时,轴,点M的横坐标为4,点M是直线BD:上,,Ⅱ、当时,轴,点M的横坐标为,点M是直线BD:上,,当OE是菱形的对角线时,记对角线的交点为,,由知,,,由知,直线OB的解析式为,点过直线PN,直线PN的解析式为,令,,,,轴,点M的横坐标为,点M是直线BD:上,,当ON为对角线时,ON与EP互相平分,点,;即:点M的坐标为或或或【点睛】此题是一次函数综合题,主要考查了矩形的性质,菱形的性质,待定系数法,三角形的面积公式,勾股定理,求出点D坐标是解本题的关键.22、(1)详见解析;(2)16【解析】
(1)根据SAS证明△ADE≌△CBF即可.(2)证明四边形ADBG是矩形,利用勾股定理求出BD即可解决问题.【详解】(1)证明:∵四边形ABCD是平行四边形,∴DA=BC,∠DAE=∠C,CD=AB,∵E、F分别为边AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,∴△ADE≌△CBF(SAS).(2)解:∵四边形ABCD是平行四边形,∴AD∥BG,∵BD∥AG,∴四边形ADBG是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∴AE=EB,∴DE=AE=EB,∴∠ADE=∠EAD,∠EDB=∠EBD,∵∠EAD+∠EDA+∠EDB+∠EBD=180°,∴∠EDA+∠EDB=90°,∴∠ADB=90°,∴四边形ADBG是矩形,∵BD=,∴S矩形ADBG=AD•DB=16.【点睛】本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.23、详见解析【解析】
根据平行四边形的性质,证明全等即可证明结论.【详解】证明:四边形是平行四边形,,......【点睛】本题主要考查平行四边形的性质定理,关键在于寻找全等的三角形.24、,数轴见解析.【解析】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据分析与商业智能的关系的试题及答案
- 软件设计师考试笔试技巧试题及答案
- 小学生道德判断能力的培养计划
- 企业灵活创新与战略风险转变的实质考核试题及答案
- 幼儿园创意手工活动计划
- 财务报表中隐含的信息分析计划
- 福建省南平市剑津片区2025届八下数学期末监测模拟试题含解析
- 学生自我管理与反思计划
- 2024年台州温岭市箬横镇中心卫生院招聘真题
- 2024年陕西工运学院辅导员考试真题
- 输血法律法规知识培训课件
- 环卫工人安全知识培训课件
- 2024螺旋锥体挤土压灌桩技术标准
- 部编本语文四年级全册各单元教材解读
- 人工流产患者术后护理
- 电子生产企业人力资源管理制度
- (完整版)总局关于发布医疗器械分类目录的公告(2017年第104号)新版本医疗器械分类目录2018版
- 房屋建筑工程竣工验收技术资料统一用表(2024 版)
- 康复医学科治疗技术操作规范2023版
- 磷酸铁及磷酸铁锂异物防控管理
- 大学生创业计划书:烧烤店
评论
0/150
提交评论