浙江省义乌市秀湖中学2025年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
浙江省义乌市秀湖中学2025年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
浙江省义乌市秀湖中学2025年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
浙江省义乌市秀湖中学2025年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
浙江省义乌市秀湖中学2025年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省义乌市秀湖中学2025年八年级数学第二学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)303028281.211.051.211.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁2.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=3893.矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H.若AB=6,则CH=()A. B. C. D.4.若是一个完全平方式,则k的值是()A.8 B.-2 C.-8或-2 D.8或-25.当k>0,b<0时,函数y=kx+b的图象大致是()A. B.C. D.6.四边形的四条边长依次为a、b、c、d,其中a,c为对边且满足,那么这个四边形一定是()A.任意四边形 B.对角线相等的四边形C.平行四边形 D.对角线垂直的四边形7.、、为三边,下列条件不能判断它是直角三角形的是()A. B.,,C. D.,,(为正整数)8.一元二次方程的解是()A. B. C., D.9.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=()A.25° B.30° C.35° D.55°10.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大 B.减小 C.不变 D.先增大再减小二、填空题(每小题3分,共24分)11.将函数的图象向下平移3个单位,所得图象的函数解析式为______.12.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.13.如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.14.化简:(2)2=_____.15.反比例函数与一次函数图象的交于点,则______.16.如图,点B是反比例函数在第二象限上的一点,且矩形OABC的面积为4,则k的值为_______________.17.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.18.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.三、解答题(共66分)19.(10分)如图,将一矩形纸片OABC放在平面直角坐标系中,O(1,1),A(6,1),C(1,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE=,OF=(用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=1.求S与b之间的函数关系式,并求出自变量b的取值范围.20.(6分)如图,抛物线与轴交于两点和与轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点作轴的垂线,交的另一边于点将沿折叠,使点落在点处,设点的运动时间为秒.(1)求抛物线的解析式;(2)N为抛物线上的点(点不与点重合)且满足直接写出点的坐标;(3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.21.(6分)如图1,点是正方形边上任意一点,以为边作正方形,连接,点是线段中点,射线与交于点,连接.(1)请直接写出和的数量关系和位置关系.(2)把图1中的正方形绕点顺时针旋转,此时点恰好落在线段上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形绕点顺时针旋转,此时点、恰好分别落在线段、上,连接,如图3,其他条件不变,若,,直接写出的长度.22.(8分)化简:23.(8分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;(2)求△OAB的边AB上的中线的长.24.(8分)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,-2)两点,求此函数的解析式.25.(10分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第分钟时,水温为,记录的相关数据如下表所示:第一次加热、降温过程…t(分钟)0102030405060708090100…y()204060801008066.757.15044.440…(饮水机功能说明:水温加热到时饮水机停止加热,水温开始下降,当降到时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程关于的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是,若18:00开启饮水机(初始水温)到当晚20:10,沏茶的最佳水温时间共有多少分钟?26.(10分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】在这四位同学中,丙、丁的平均时间一样,比甲、乙的用时少,但丁的方差小,成绩比较稳定,由此可知,可选择丁,故选D.2、B【解析】

解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.3、D【解析】

过作,交于,交于,则,证是等腰直角三角形,得出,证,为的中位线,进而得出答案.【详解】解:如图,过作,交于,交于,则,四边形是矩形,,,,,,平分,,,,,是等腰直角三角形,,点是的中点,,为的中位线,,,;故选:.【点睛】本题考查了矩形的性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,三角形中位线定理等知识;熟练掌握矩形的性质和等腰直角三角形的判定与性质是解本题的关键.4、D【解析】

利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵x1+1(k-3)x+15是一个整式的平方,

∴1(k-3)=±10,

解得:k=8或-1.

故选:D.【点睛】考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5、D【解析】由一次函数图象与系数的关系可得,当k>0,b<0时,函数y=kx+b的图象经过一三四象限.故选D.6、C【解析】

题中给出的式子我们不能直观的知道四边形的形状,则我们可以先首先把变形整理,先去括号,再移项之后,可利用完全平方差的公式得到边之间的关系.从而判断四边形的形状.【详解】两个非负数相加得零,只有0+0=0这种情况故所以故得到两组对边相等,则四边形为平行四边形故答案为C【点睛】本题通过式与形的结合,考察了非负数的性质和平行四边形的判定.需要了解的知识点有:两个非负数相加得零,只有0+0=0这种情况;两组对边相等的四边形是平行四边形.7、C【解析】

根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.【详解】解:A.即,根据勾股定理逆定理可判断△ABC为直角三角形;B.,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;C.根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;D.,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;故选:C【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.8、C【解析】试题解析:,或,.故选C.9、A【解析】

由AD∥BC得到∠B=180°-∠A,而∠A=115°,由此可以求出∠B,又CE⊥AB,所以在三角形BCE中利用三角形内角和即可求出∠BCE.【详解】解:∵AD∥BC,

∴∠B=180°-∠A=65°,

又CE⊥AB,

∴∠BCE=90°-65°=25°.

故选:A.【点睛】此题主要考查平行四边形的性质和直角三角形的性质.10、C【解析】

首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【详解】解:如图,过A作AG⊥BD于G,

则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),

∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,

∴OA=OD,

∴PE+PF=AG,

∴PE+PF的值是定值,

故选C.【点睛】本题考查矩形的性质、等腰三角形的性质、三角形的面积计算.解决本题的关键是证明等腰三角形底边上的任意一点到两腰距离的和等于腰上的高.二、填空题(每小题3分,共24分)11、y=2x﹣1【解析】

根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【详解】根据“上加下减”的原理可得:函数y=2x的图象向下平移1个单位后得出的图象的函数解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.12、y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).13、2或【解析】

过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则,II.当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.【详解】解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.设AE=FC=x.由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.∵AE∥DG,∴∠AED=∠EDF.∴∠DEP=∠EDF.∴EF=DF.∴GF=DF﹣DG=x+1.在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).∴EF=2x+1=2×2+1=2.II.当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,在Rt△EFG中,∵EF2=EG2+FG2,∴(2x﹣1)2=42+(x﹣1)2,∴x=或﹣2(舍弃),∴EF=2x﹣1=故答案为:2或.【点睛】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.14、1.【解析】

根据二次根式的性质:进行化简即可得出答案.【详解】故答案为:1.【点睛】本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.15、-1【解析】试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.考点:待定系数法求反比例函数解析式16、-1【解析】

根据矩形的面积求出xy=−1,即可得出答案.【详解】设B点的坐标为(x,y),∵矩形OABC的面积为1,∴−xy=1,∴xy=−1,∵B在上,∴k=xy=−1,故答案为:-1.【点睛】本题考查了矩形的性质和反比例函数图象上点的坐标特征,能求出xy=−1和k=xy是解此题的关键.17、(1,3)或(4,3)【解析】

根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.【详解】∵C(0,3),A(9,0)∴B的坐标为(9,3)①当P运动到图①所示的位置时此时DO=PD=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4∴OE=OD-DE=1此时P点的坐标为(1,3);②当P运动到图②所示的位置时此时DO=PO=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4此时P点的坐标为(4,3);③当P运动到图③所示的位置时此时OD=PD=5过点P作PE⊥OA于点E在RT△OPE中,根据勾股定理4∴OE=OD+DE=9此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.综上所述,P的坐标为(1,3)或(4,3)【点睛】本题主要考查等腰三角形的判定以及勾股定理的应用.18、2或【解析】

由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和B之间,(2)当Q运动到E和C之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.据此设运动时间为t,列出关于t的方程求解.【详解】由已知梯形,

当Q运动到E和B之间,设运动时间为t,则得:=6-t,

解得:t=,

当Q运动到E和C之间,设运动时间为t,则得:-2t=6-t,

解得:t=2,

故当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为2或【点睛】此题主要考查了梯形及平行四边形的性质,关键是由已知明确有两种情况,不能漏解.三、解答题(共66分)19、(1)6-t,+t;(2)①直线DE的解析式为:y=-;②【解析】

(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据E点与F点的运动速度与运动时间即可用含t的代数式表示OE,OF;(2)①由翻折的性质可知:△OPF≌△DPF,进而可得:DF=OF,然后由t=1时,DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,进而可求点D和E的坐标;利用待定系数可得直线DE的解析式;②先确定出k的值,再分情况计算S的表达式,并确认b的取值.【详解】(1)∵O(1,1),A(6,1),C(1,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点F从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相等的速度沿AO向终点O运动,∴当点E的运动时间为t(秒)时,AE=t,OF=+t,则OE=OA-AE=6-t,故答案为:6-t,+t;(2)①当t=1时,OF=1+=,OE=6-1=5,则CF=OC-OF=3-=,由折叠可知:△OEF≌△DEF,∴OF=DF=,由勾股定理,得:CD=1,∴D(1,3);∵E(5,1),∴设直线DE的解析式为:y=mx+n(k≠1),把D(1,3)和E(5,1)代入得:,解得:,∴直线DE的解析式为:y=-;②∵MN∥DE,∴MN的解析式为:y=-,当y=3时,-=3,x=(b-3)=b-4,∴CM=b-4,分三种情况:i)当M在边CB上时,如图2,∴BM=6-CM=6-(b-4)=11-b,DM=CM-1=b-5,∵1≤DM<5,即1≤b-5<5,∴≤b<,∴S=BM•AB=×3(11−b)=15-2b=-2b+15(≤b<);ii)当M与点B重合时,b=,S=1;iii)当M在DB的延长线上时,如图3,∴BM=CM-6=b-11,DM=CM-1=b-5,∵DM>5,即b-5>5,∴b>,∴S=BM•AB=×3(b−11)=2b-15(b>);综上,.【点睛】本题是四边形和一次函数的综合题,考查了动点的问题、矩形的性质、全等三角形的判定与性质等知识,解(1)的关键是:明确动点的时间和速度;解(2)的关键是:由翻折的性质可知:△OEF≌△DEF,并采用了分类讨论的思想,注意确认b的取值范围.20、(1);(2)(-5,1)或(,-1)或(,-1);(1)存在,时,有最大值为.【解析】

(1)把A(-1,0),B(1,0)代入y=ax2+bx+1,得到关于a、b的二元一次方程组,解方程组即可得到结论;(2)由抛物线解析式求出C(0,1),根据同底等高的两个三角形面积相等,可知N点纵坐标的绝对值等于1,将y=±1分别代入二次函数解析式,求出x的值,进而得到N点的坐标;(1)由于点D在y轴的右侧时,过点作轴的垂线,无法与的另一边相交,所以点D在y轴左侧,根据题意求出直线AC的解析式及E,D,F的坐标,然后根据三角形面积求得与t的函数关系式,然后利用二次函数的性质求最值即可.【详解】解:(1)把A(-1,0),B(1,0)代入y=ax2+bx+1中,得,解得,∴抛物线的解析式为:,(2)∵抛物线与y轴交于点C,∴C(0,1).∵N为抛物线上的点(点不与点重合)且S△NAB=S△ABC,∴设N(x,y),则|y|=1.把y=1代入,得,解得x=0或-5,x=0时N与C点重合,舍去,∴N(-5,1);把y=-1代入,得,解得∴N(,-1)或(,-1).综上所述,所求N点的坐标为(-5,1)或(,-1)或(,-1);(1)存在.由题意可知,∵过点作轴的垂线,交的另一边于点∴点D必在y轴的左侧.∵AD=2t,∴由折叠性质可知DF=AD=2t,∴OF=1-4t,∴D(2t-1,0),∵设直线AC的解析式为:,将A(-1,0)和C(0,1)代入解析式得,解得∴直线AC的解析式为:∴E(2t-1,2t).∴∵-4<0时,有最大值为.【点睛】本题是二次函数综合题,其中涉及到利用待定系数法求直线、抛物线的解析式,二次函数的性质,三角形的面积等知识.利用数形结合是解题的关键.21、(1);(2)见解析;(3).【解析】

(1)证明ΔFME≌ΔAMH,得到HM=EM,根据等腰直角三角形的性质可得结论.(2)根据正方形的性质得到点A、E、C在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知.(3)如图3中,连接EC,EM,由(1)(2)可知,△CME是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM=ME,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,∴△FME≌△BMH(ASA),∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接,∵四边形和四边形是正方形,∴∴点在同一条直线上,∵,为的中点,∴,,∴,∵,∴,∵,∴∴,∴,∴.(3)如图3中,连接EC,EM.由(1)(2)可知,△CME是等腰直角三角形,∵∴CM=EM=【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.22、【解析】

先二次根式化性质和分母有理化和把二次根式为最简二次根式,利用完全平方公式将括号展开,然后合并同类二次根式即可;【详解】解:==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.23、(1)k=﹣,b=;(2)AB边上的中线长为.【解析】

(1)由A、B两点的坐标利用待定系数法可求得k、b的值;(2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.【详解】(1)∵点A、B都在一次函数y=kx+b图象上,∴把(2,1)、(﹣2,4)代入可得,解得,∴k=﹣,b=;(2)如图,设直线AB交y轴于点C,∵A(2,1)、B(﹣2,4),∴C点为线段AB的中点,由(1)可知直线AB的解析式为y=﹣x+,令x=0可得y=,∴OC=,即AB边上的中线长为.【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解24、y=5x-2【解析】试题分析:直接把A点和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论