




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京陈经纶中学2025届八年级数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各数中,与的积为有理数的是()A. B. C. D.2.某校八年级(2)班第一组女生的体重(单位:):35,36,36,42,42,42,45,则这组数据的众数为()A.45 B.42 C.36 D.353.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC的度数是()A.15° B.20° C.40° D.50°4.某种材料的厚度是0.0000034m,0.0000034这个数用科学记数法表示为()A.0.34×10-6 B.3.4×10-65.下列函数中,一定是一次函数的是A. B. C. D.6.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第个图形中小菱形的个数用含有的式子表示为()A. B. C. D.7.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的()A.众数 B.平均数 C.频数 D.方差8.如图,在ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是()A.∠A=60˚ B.DE=DF C.EF⊥BD D.BD是∠EDF的平分线9.下列分式是最简分式的是()A. B. C. D.10.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为12.如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.13.统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.年龄/岁人数/个14.《九章算术》中记载:今有户不知高、广,竿不知长、短,横之不出四尺,纵之不出二尺,邪之适出.问户高、广、邪各几何?这段话翻译后是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为_____.15.若ab=1316.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.17.比较大小:________.18.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么__________(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试9095面试8580三、解答题(共66分)19.(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.学校若干名学生成绩分布统计表分数段(成绩为x分)频数频率50≤x<60160.0860≤x<70a0.3170≤x<80720.3680≤x<90cd90≤x≤10012b(1)此次抽样调查的样本容量是;(2)写出表中的a=,b=,c=;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?20.(6分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.21.(6分)解方程.22.(8分)已知一次函数与一次函数的图象的交点坐标为,求这两个一次函数的解析式及两直线与轴围成的三角形的面积.23.(8分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.(1)求直线BE的解析式;(2)求点D的坐标;24.(8分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.25.(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.(1)设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?26.(10分)已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=1.(1)当t=3时,解这个方程;(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据实数运算的法则对各选项进行逐一计算作出判断.【详解】解:A、,是无理数,故本选项错误;B、,是无理数,故本选项错误;C、,是有理数,故本选项正确;D、,是无理数,故本选项错误.故选C.2、B【解析】
出现次数最多的数是1.故众数是1.【详解】解:出现次数最多的数是1.故众数是1.故答案:B【点睛】注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.3、A【解析】
根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案【详解】∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故选:A.【点睛】此题考查线段垂直平分线的性质和等腰三角形的性质,关键在于利用线段垂直平分求出AD=BD4、B【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10−1.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、A【解析】
根据一次函数的定义,逐一分析四个选项,此题得解.【详解】解:、,是一次函数,符合题意;、自变量的次数为,不是一次函数,不符合题意;、自变量的次数为2,不是一次函数,不符合题意;、当时,函数为常数函数,不是一次函数,不符合题意.故选:.【点睛】本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.6、B【解析】
根据图形的变化规律即可求出第个图形中小菱形的个数.【详解】根据第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,每次增加3个菱形,故第个图形中小菱形的个数为1+3(n-1)=个,故选B.【点睛】此题主要考查图形的规律探索,解题的关键是根据图形的变化找到规律进行求解.7、D【解析】
根据只有方差是反映数据的波动大小的量,由此即可解答.【详解】众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.所以为了判断成绩是否稳定,需要知道的是方差.故选D.【点睛】本题考查统计学的相关知识.注意:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数;方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、A【解析】
先证明四边形BFDE是平行四边形,再根据菱形的判定定理逐项进行分析判断即可.【详解】由题意知:四边形ABCD是平行四边形,∴∠ADC=∠ABC,∠A=∠C,AD=BC,AB=CD,ABCD又∵DE,BF分别是∠ADC和∠ABC的平分线,∴∠ADE=∠FBC,在△ADE和△CBF中∴△ADE≌△CBF(ASA)∴AE=CF,DE=BF又∵AB=CD,ABCD,AE=CF∴DF=BE,DFBE、∴四边形BFDE是平行四边形.A、∵AB//CD,∴∠AED=∠EDC,又∵∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE,又∵∠A=60°,∴△ADE是等边三角形,∴AD=AE=DE,无法判断平行四边形BFDE是菱形.B、∵DE=DF,∴平行四边形BFDE是菱形.C、∵EF⊥BD,∴平行四边形BFDE是菱形.D、∵BD是∠EDF的平分线,∴∠EDB=∠FDB,又∵DF//BE,∴∠FDB=∠EBD,∴∠EDB=∠EBD,∴ED=DB,∴平行四边形BFDE是菱形.故选A.【点睛】本题考查了平行四边形的性质,菱形的判定,正确掌握菱形的判定定理是解题的关键.9、C【解析】
解:A、=﹣1;B、;C、分子、分母中不含公因式,不能化简,故为最简分式;D、故选C.10、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.二、填空题(每小题3分,共24分)11、3【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考点:平行线分线段成比例.12、8【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.【详解】∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.13、【解析】
计算出学校排球队队员的总年龄再除以总人数即可.【详解】解:(岁)所以该排球队队员的平均年龄是14岁.故答案为:14【点睛】本题考查了平均数,掌握求平均数的方法是解题的关键.14、x1=(x﹣4)1+(x﹣1)1【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据题意可列方程为x1=(x﹣4)1+(x﹣1)1,故答案为:x1=(x﹣4)1+(x﹣1)1.【点睛】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.15、-2【解析】试题解析:∵a∴b=3a∴a+ba-b16、1.【解析】
根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.【详解】∵a+b=3,ab=2,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1故答案为:1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17、<【解析】试题解析:∵∴∴18、李老师.【解析】
利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【详解】解:李老师总成绩为:90×+85×=87,
王老师的成绩为:95×+80×=86,
∵87>86,
∴李老师成绩较好,
故答案为:李老师.【点睛】考查加权平均数的计算方法,以及利用加权平均数对事件作出判断,理解权对平均数的影响.三、解答题(共66分)19、(1)200;(2)62,0.06,38;(3)a=62,c=38,图见解析;(4)1.【解析】
(1)根据50≤x<60的人数及占比即可求出此次抽样调查的样本容量;(2)根据抽样调查的样本容量即可求出a,b,c的值;(3)根据所求即可补全统计图;(4)求出1≤x<90和90≤x≤100的频率和为0.25,即可得到一等奖的分数线.【详解】解:(1)16÷0.08=200,故答案为:200;(2)a=200×0.31=62,b=12÷200=0.06,c=200﹣16﹣62﹣72﹣12=38,故答案为:62,0.06,38;(3)由(2)知a=62,c=38,补全的条形统计图如右图所示;(4)d=38÷200=0.19,∵b=0.06,0.06+0.19=0.25=25%,∴一等奖的分数线是1.【点睛】此题主要考查统计调查,解题的关键是根据题意求出抽样调查的样本容量.20、(1)EF=6﹣;(2)见解析【解析】
(1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=6,构建方程求出x,证明EF=BF,求出BF即可解决问题.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是菱形,∵AB=BC=CD=AD=6,AD∥BC,∴∠ABC=180°﹣∠BAD=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACE=15°,∴∠ECG=∠ACB﹣∠ACE=45°,∵EG⊥CG,∴∠EGC=90°,∴EG=CG,设BG=x,则EG=CG=x,∴x+x=6,∴x=3﹣3,∵四边形ABCD是菱形,∴∠FBG=∠EBF=30°,∵∠BEG=30°,∴FB=FE,∵BF===6﹣,∴EF=6﹣.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.∵EG⊥BC,MC⊥BC,∴EF∥CM,∴∠FEH=∠HCM,∵∠EHF=∠CHM,EH=CH,∴△EFH≌△CMH(ASA),∴EF=CM,FH=HM,∵EF=BF,∴BF=CM,∵∠ABF=∠ACM=30°,BA=CA,∴△BAF≌△CAM(SAS),∴AF=AM,∠BAF=∠CAM,∴∠FAM=∠BAC=60°,∴△FAM是等边三角形,∵FH=HM,∴AH⊥FM,∠FAH=∠FAM=×60°=30°,∴AF=2FH.【点睛】本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、原分式方程无解.【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.22、和;两条直线与轴围成的三角形面积为1.【解析】
(1)将点A坐标代入两个函数解析式中求出k和b的值即可;(2)分别求出两个一次函数与y轴的交点坐标,代入三角形面积公式即可.【详解】解:将点分别代入两个一次函数解析式,得解得所以两个一次函数的解析式分别为和.(2)把代入,得;把代入,得.所以两个一次函数与轴的交点坐标分别为和.所以两条直线与轴围成的三角形面积为:.【点睛】本题考查了两条直线相交或平行问题以及待定系数法求一次函数的解析式,难度不大.23、(1)直线BE的解析式为y=x+2;(2)D(-3,).【解析】
(1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;(2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.【详解】(1),令x=0,则y=2,令y=0,则,解得:x=-6,∴A(-6,0),B(0,2),∴OA=6,OB=2,∴AB==4,∵折叠,∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,∴∠ADE=90°,AD=AB-BD=2,设DE=EO=m,则AE=AO-OE=6-m,在Rt△ADE中,AE2=AD2+DE2,即(6-m)2=m2+(2)2,解得:m=2,∴OE=2,∴E(-2,0),设直线BE的解析式为:y=kx+b,把B、E坐标分别代入得:,解得:,∴直线BE的解析式为y=x+2;(2)过点D作DM⊥AO,垂足为M,由(1)DE=2,AE=AO-OE=4,∵S△ADE=,即,∴DM=,∴点D的纵坐标为,把y=代入,得,解得:x=-3,∴D(-3,).【点睛】本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.24、四边形是菱形,见解析.【解析】
根据菱形的判定方法即可求解.【详解】解:四边形是菱形,证明:过点分别作于点,于点,∴,∵两张纸条等宽∴,,且,∴四边形是平行四边形,∴,∴,∴.∴四边形是菱形.【点睛】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.25、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法学概论考试形式介绍试题及答案
- 突破法学概论难题的试题及答案
- 2025超市供货合同模板
- 信息处理技术员2025年试题及答案
- 前台文员如何做好多任务处理计划
- 二级VB考试分析报告试题及答案
- 行政法中的社会公平与效率的动态平衡试题及答案
- 邮员工考核评语
- 前台文员的岗位职责明晰计划
- 风险管理在企业发展中的应用试题及答案
- 肠结病(不完全性肠梗阻)中医诊疗方案(试行)
- 肩周炎的康复PPT通用课件
- GB/T 328.5-2007建筑防水卷材试验方法第5部分:高分子防水卷材厚度、单位面积质量
- GB/T 15970.6-2007金属和合金的腐蚀应力腐蚀试验第6部分:恒载荷或恒位移下预裂纹试样的制备和应用
- 案款收款账户确认书
- 9-马工程《艺术学概论》课件-第九章(20190403)【已改格式】.课件电子教案
- 施工现场建筑垃圾处置专项方案
- 欢迎新同学幼儿园中小学开学第一课入学准备ppt
- (整理)柴油发电机的检修
- 2021年肇庆市端州区华佗医院医护人员招聘笔试试题及答案解析
- JJG 694-2009 原子吸收分光光度计-(高清现行)
评论
0/150
提交评论