




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西北部湾八年级数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是()A. B. C.4 D.32.菱形与矩形都具有的性质是().A.对角相等 B.四边相等 C.对角线互相垂直 D.四角相等3.下列计算正确的是()A. B. C. D.﹣4.具备下列条件的三角形中,不是直角三角形的是()A.∠A+∠B=∠C B.∠B=∠C=∠AC.∠A=90°-∠B D.∠A-∠B=90°5.如果,那么()A. B. C. D.x为一切实数6.如图,□ABCD中,AE平分∠DAB,∠B=100°则∠DAE等于()A.40° B.60° C.80° D.100°7.下列函数中,y随x增大而减小的是()A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=8.计算25A.5 B.2 C.1 D.-59.若分式有意义,则实数的取值范围是()A. B. C. D.10.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是(
)A.12 B.10 C.8或10 D.611.我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有(
)个.①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.A.1
B.2
C.3
D.412.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第(7)个图案中阴影小三角形的个数是()A. B. C. D.二、填空题(每题4分,共24分)13.化简:(2)2=_____.14.如图,直线y1=-x+a与直线y2=bx-4相交于点P(1,-3),则不等式-x+a≥bx-4的解集是___________.15.使有意义的x的取值范围是.16.若,则的值是________.17.计算:÷=_____.18.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.三、解答题(共78分)19.(8分)如图,反比例函数的图象经过点(1)求该反比例函数的解析式;(2)当时,根据图象请直接写出自变量的取值范围.20.(8分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出把△ABC向下平移4个单位后的图形.(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.21.(8分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.22.(10分)阅读下列材料:数学课上,老师出示了这样一个问题:如图,菱形和四边形,,连接,,.求证:;某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察分析,发现与存在某种数量关系”;小强:“通过观察分析,发现图中有等腰三角形”;小伟:“利用等腰三角形的性质就可以推导出”.……老师:“将原题中的条件‘’与结论‘’互换,即若,则,其它条件不变,即可得到一个新命题”.……请回答:(1)在图中找出与线段相关的等腰三角形(找出一个即可),并说明理由;(2)求证:;(3)若,则是否成立?若成立,请证明;若不成立,请说明理由.23.(10分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.(1)画出关于轴的对称图形,并写出其顶点坐标;(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.24.(10分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.25.(12分)解不等式组:(1);(2).26.已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得>ax+b成立的自变量x的取值范围;(3)过点A作AC⊥x轴,垂足为C,在平面内有点D,使得以A,O,C,D四点为顶点的四边形为平行四边形,直接写出符合条件的所有D点的坐标.
参考答案一、选择题(每题4分,共48分)1、A【解析】
利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可【详解】如图,作DH⊥AC于H,∵∴5(x-2)=3x∴x=5经检验:x=5是分式方程的解∵AC长是分式方程的解∴AC=5∵∠B=90°∴DB⊥AB,DH⊥AC∵AD平分∠BAC,∴DH=DB=S=故选A【点睛】此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线2、A【解析】
根据矩形、菱形的性质分别判断即可解决问题.【详解】A.对角相等,菱形和矩形都具有的性质,故A正确;B.四边相等,菱形的性质,矩形不具有的性质,故B错误;C.对角线互相垂直,矩形不具有的性质,故C错误;D.四角相等,矩形的性质,菱形不具有的性质,故D错误;故选:A.【点睛】此题考查菱形的性质,矩形的性质,解题关键在于掌握各性质定义.3、C【解析】
根据二次根式的运算法则即可求出答案.【详解】解:(A)原式=2﹣=,故A错误;(B)原式=2,故B错误;(D)原式=﹣,故D错误;故选C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4、D【解析】
根据三角形内角和定理对各选项进行逐一判断即可.【详解】A.
∵∠A+∠B=∠C,∠A+∠B+∠C=180°∴2∠C=180°,解得∠C=90°,∴此三角形是直角三角形,故本选项错误;B.
∵∠B=∠C=∠A,∴设∠B=∠C=x,则∠A=2x.∵∠A+∠B+∠C=180°,∴x+x+2x=180°,解得x=45°,∴∠A=2x=90°,∴此三角形是直角三角形,故本选项错误;C.
∵∠A=90°−∠B,∴∠A+∠B=90°,∴此三角形是直角三角形,故本选项错误;D.∵∠A-∠B=90°,∴∠A=∠B+90°,∴此三角形不是直角三角形,故本选项正确.故答案选D.【点睛】本题考查了三角形内角和定理,解题的关键是熟练的掌握三角形内角和定理.5、B【解析】∵,∴x≥0,x-6≥0,∴.故选B.6、A【解析】分析:由平行四边形的性质得出AD∥BC,得出∠DAB=180°-100°=80°,由角平分线的定义得出∠DAE=∠DAB=40°即可.详解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD+∠B=180°,∴∠DAB=180°−100°=80°,∵AE平分∠DAB,∴∠DAE=∠DAB=40°;点睛:本题主要考查了平行四边形的性质,关键在于理解平行四边形的对边互相平行.7、B【解析】
∵函数(y=kx+b)中y随x增大而减小,∴k<0,∵只有B选项k=-2<0,其它选项都大于0,∴B选项是正确.故选B.8、A【解析】
根据二次根式的运算法则即可求出答案.【详解】解:原式=5故选:A.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9、B【解析】
分式有意义,则,求出x的取值范围即可.【详解】∵分式有意义,∴,解得:,故选B.【点睛】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.10、B【解析】
根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.11、D【解析】
从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】由图象,得①600÷6=100米/天,故①正确;②(500−300)÷4=50米/天,故②正确;③甲队4天完成的工作量是:100×4=400米,乙队4天完成的工作量是:300+2×50=400米,∵400=400,∴当x=4时,甲、乙两队所挖管道长度相同,故③正确;④由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8−6=2天,∴甲队比乙队提前2天完成任务,故④正确;故答案为①②③④12、A【解析】
对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.【详解】解:由图可知:
第一个图案有阴影小三角形2个.
第二图案有阴影小三角形2+4=6个.
第三个图案有阴影小三角形2+8=10个,
那么第n个图案中就有阴影小三角形2+4(n-1)=4n-2个,
当n=7时,4n-2=4×7-2=26.
故选:A.【点睛】本题考查图形的变化规律,注意由特殊到一般的分析方法,此题的规律为:第n个图案中就有阴影小三角形4n-2个.二、填空题(每题4分,共24分)13、1.【解析】
根据二次根式的性质:进行化简即可得出答案.【详解】故答案为:1.【点睛】本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.14、x≤1.【解析】
观察函数图象得到当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1.【详解】如图,当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1;故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、【解析】
根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】根据二次根式的定义可知被开方数必须为非负数,列不等式得:x+1≥0,解得x≥﹣1.故答案为x≥﹣1.【点睛】本题考查了二次根式有意义的条件16、1【解析】
利用完全平方公式变形,原式=,把代入计算即可.【详解】解:把代入得:原式=.故答案为:1.【点睛】本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.17、1【解析】
直接利用二次根式的除法运算法则得出即可.【详解】解:÷==1.故答案为1.【点睛】本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.18、5.【解析】
根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分
N在矩形ABCD内部与
N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4.设AM=MN=x,∵MD=5﹣x,MC=4+x,∴在Rt△MDC中,CD5+MD5=MC5,35+(5﹣x)5=(4+x)5,解得x=3;当∠BNC=90°,N在矩形ABCD外部时,如图5.∵∠BNC=∠MNB=90°,∴M、C、N三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4,设AM=MN=y,∵MD=y﹣5,MC=y﹣4,∴在Rt△MDC中,CD5+MD5=MC5,35+(y﹣5)5=(y﹣4)5,解得y=9,则所有符合条件的M点所对应的AM和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.三、解答题(共78分)19、(1)(2)或【解析】
(1)首先设反比例函数解析式为y=,把点(-1,3)代入反比例函数解析式,进而可以算出k的值,进而得到解析式;(2)根据反比例函数图象可直接得到答案.【详解】(1)设反比例函数解析式为,把点代入得:,∴函数解析式为;(2)或.【点睛】此题主要考查了待定系数法求反比例函数解析式,以及利用函数图象求自变量的值,关键是掌握凡是反比例函数图象经过的点必能满足解析式.20、(1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;(2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;(3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.【详解】(1)如图所示,△即为所求作;(2)如图所示,△DEF即为所求作;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【点睛】此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.21、(1)BD∥AC;(2);(3)【解析】
(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.【详解】(1),,,,点B为线段OA的中点,点D为OC的中点,即BD为的中位线,;(2)如图1,作于点F,取AB的中点G,则,,BD与AC的距离等于2,,在中,,,点G为AB的中点,,是等边三角形,.,设,则,根据勾股定理得:,,,点C在x轴的正半轴上,点C的坐标为;(3)如图2,当四边形ABDE为平行四边形时,,,点D为OC的中点,,,,,点C在x轴的正半轴上,点C的坐标为,设直线AC的解析式为.将,得,解得:.直线AC的解析式为.【点睛】此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.22、(1)见解析;(2)见解析;(3)见解析.【解析】
(1)先利用菱形的性质,得出是等边三角形,再利用等边三角形的性质,即可解答(2)设,根据菱形的性质得出,由(1)可知,即可解答(3)连接,在上取点,使,延长至,使,连接,连接,设与的交点为,首先证明,再根据全等三角形的性质得出是等边三角形,然后再证明,即可解答【详解】(1)是等腰三角形;证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴.∵,∴,∴是等腰三角形.(2)设.∵四边形是菱形,∴,∴.由(1)知,,同理可得:.∴,∴,∴,∴.∴.(3)成立;证明:如图2,连接,在上取点,使,延长至,使,连接,连接,设与的交点为.∵,,∴.∵,∴(ASA),∴,,∴,∴.∵,∵,∵,∴是等边三角形,∴.∵,∵,∴,∴.∵,∴,∴,∵,∴.【点睛】此题考查全等三角形的判定与性质,菱形的性质,等边三角形的判定与性质,解题关键在于作辅助线23、(1)图详见解析,;(2)图详见解析,【解析】
(1)分别作出,,的对应点,,即可.(2)分别作出,,的对应点,,即可.【详解】解:(1)△如图所示.,,;(2)△如图所示.,,.【点睛】本题考查轴对称变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)y=x+1;(2)见解析.【解析】
(1)设一次函数的解析式是y=kx+b,把A(0,1)、B(2,4)代入得出方程组,求出方程组的解即可;
(2)过A、B作直线即可;【详解】(1)解:设一次函数的解析式是y=kx+b,
∵把A(0,1)、B(2,4)代入得:解得:k=0.5,b=1,
∴一次函数的解析式是y=x+1.(2)解:如图【点睛】本题考查用待定系数法求一次函数的解析式,一次函数的图象画法等知识的应用,解题关键是熟练掌握一次函数的性质.25、(1);(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政法学考前心理调备与调整:试题及答案
- 电气火灾应急预案内容(3篇)
- 高考数学基础知识点试题及答案
- 水电站火灾逃生应急预案(3篇)
- 自我成长的旅程2024年高考作文考试试题及答案
- 行政法学必背试题与答案清单
- 火灾应急预案培训报道(3篇)
- 火灾应急预案人员分工(3篇)
- 鹿泉小区火灾应急预案(3篇)
- 机器学习的伦理问题考核试题及答案
- 购买食堂设备合同范例
- 糖尿病合并冠心病护理查房
- 公务出国在职证明-英文版(因公签证)
- 安规线路培训
- 老年慢病管理
- 故都的秋课文原文
- 中国普通食物营养成分表(修正版)
- 陕西省西安市新城区2024-2025学年一年级上学期期中语文试卷
- 短暂性脑缺血发作
- 对话大国工匠 致敬劳动模范学习通超星期末考试答案章节答案2024年
- 安全生产月启动仪式活动方案
评论
0/150
提交评论