




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届七下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,∠C=90°,AC=3cm,BC=4cm,点P是BC边上一动点,则线段AP的长不可能是()A.2.5cm B.3cm C.4cm D.5cm2.将不等式组的解集在数轴上表示出来,正确的是()A. B.C. D.3.如图,一条公路两次转弯后,和原来的方向相同,如果第一次的拐角是,则第二次的拐角是A. B. C. D.4.如图,∠AOB=120°,OP平分∠AOB,且OP=3,若点M,N分别在OA,OB上,ΔPMN为等边三角形,则满足上述条件的△PMN有中()A.1个 B.2个 C.3个 D.3个以上5.下列说法,正确的是()A.等腰三角形的高、中线、角平分线互相重合B.到三角形二个顶点距离相等的点是三边垂直平分线的交点C.三角形一边上的中线将三角形分成周长相等的两个三角形D.两边分别相等的两个直角三角形全等6.若,则等于()A. B. C. D.7.将一个各面涂成红色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个恰有3个面涂成红色的概率是()A. B. C. D.8.已知关于x的不等式组-x≥ax-1≥-b的解集在数轴上表示如图,则baA.﹣16 B.116 C.﹣8 D.9.下列交通标志图案是轴对称图形的是()A. B. C. D.10.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30° B.40° C.50° D.60°二、填空题(本大题共有6小题,每小题3分,共18分)11.两根木棒的长度分别为和,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是_________(写出一个答案即可).12.不等式2x+1>3x-2的非负整数解是______.13.请写出一个以为解的二元一次方程组____________.14.“b的与c的和是负数”用不等式表示为_________.15.用不等式表示:x与5的差不小于x的2倍:________.16.已知关于x的不等式3x-a≤1的正整数解恰好是1、2、3、4,则a的取值范围为______三、解下列各题(本大题共8小题,共72分)17.(8分)已知:如图,M、N分别为两平行线AB、CD上两点,点E位于两平行线之间,试探究:∠MEN与∠AME和∠CNE之间有何关系?并说明理由.18.(8分)如图,已知l1∥l2,把等腰直角△ABC如图放置,A点在l1上,点B在l2上,若∠1=30°,求∠2的度数.19.(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?20.(8分)已知直线,(1)如图1,点在直线上的左侧,直接写出,和之间的数量关系是.(2)如图2,点在直线的左侧,,分别平分,,直接写出和的数量关系是.(3)如图3,点在直线的右侧,仍平分,,那么和有怎样的数量关系?请说明理由.21.(8分)解方程:(1)x+2=7-4x;(2)22.(10分)某机动车出发前油箱内有油.行驶若干小时后,途中在加油站加油若干升.油箱中剩余油量与行驶时间之间的关系如图所示,根据图像回答问题.(1)机动车行驶几小时后加油?(2)中途加油_____________;(3)如果加油站距目的地还有,车速为,要到达目的地,油箱中的油是否够用?并说明原因.23.(10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90°.E、F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55海里/小时的速度前进,舰艇乙沿北偏东50°的方向以75海里/小时的速度前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.24.(12分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.(1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;(2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;(3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
利用勾股定理列式求出AB,然后根据AC≤AP≤AB求出AP的范围,再选择答案即可.【详解】∵∠C=90°,AC=3,BC=4,∴AB1,∴3≤AP≤1.故选A.【点睛】本题考查了勾股定理,垂线段最短的性质,求出AP的取值范围是解题的关键2、C【解析】
解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,,由①得,>3;由②得,≤4∴其解集为:3<≤4不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,3<≤4在数轴上表示为:,故选C.3、C【解析】
根据平行线的性质即可进行判断.【详解】道路是平行的∠A=∠B=故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题关键.4、D【解析】
首先在OA、OB上截取OE=OF=OP,作∠MPN=60°,由OP平分∠AOB,∠EOP=∠POF=60°,OP=OE=OF,判断出△OPE,△OPF是等边三角形,得出EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,进而得出∠EPM=∠OPN,再由ASA判定△PEM≌△PON,得出PM=PN,又∠MPN=60°,可知△PNM是等边三角形,因此只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.【详解】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,∠PEM=∠PONPE=PO∠EPM=∠OPN∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个,故选D【点睛】此题主要考查等边三角形的性质,利用其性质进行等角转换,判定三角形全等即可得解.5、B【解析】
由三线合一的条件可知A不正确,由三角形垂直平分线的性质可知B正确,由三角形的中线可知C错误,根据全等三角形的判定判断D错误,可得出答案.【详解】解:A、等腰三角形底边上的高、中线、顶角的角平分线互相重合,错误;B、到三角形二个顶点距离相等的点是三边垂直平分线的交点,正确;C、三角形一边上的中线将三角形分成面积相等的两个三角形,错误;D、若一个直角三角形的斜边和直角边与另一个直角三角形的两个直角边相等则这两个直角三角形不全等,错误;故选B.【点睛】本题主要考查等腰三角形的性质及直角三角形全等的判定,掌握等腰三角形和直角三角形全等的判定是解题的关键.6、A【解析】
利用完全平方公式进行变形求解即可.【详解】解:∵,∴A=8xy.故选A.【点睛】本题主要考查完全平方公式,解此题的关键在于熟练掌握其知识点.7、D【解析】
首先确定三面涂有红色的小正方体的个数在27个小正方体中占的比例,根据这个比例即可求出有3个面涂有红色的概率.【详解】将一个各面涂有红色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有红色的小正方体只能在大正方体的8个角上,共8个,故恰有3个面涂有红色的概率是.故选:D.【点睛】此题考查几何概率,解题关键在于掌握概率公式计算法则.8、B【解析】
求出x的取值范围,再求出a、b的值,即可求出答案.【详解】由不等式组-x≥ax-1≥-b解得x≤-ax≥1-b故原不等式组的解集为1-b≤x≤-a,由图形可知-3≤x≤2,故1-b=-3-a=2解得a=-2b=4,则ba=1故答案选B.【点睛】本题考查的知识点是在数轴上表示不等式的解集,解题的关键是熟练的掌握在数轴上表示不等式的解集.9、B【解析】
A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.10、B【解析】
先根据平行线的性质求出∠BEF的值,再根据三角形的外角等于不相邻两个内角的和求出∠A的度数即可.【详解】∵AB∥CD,∠C=70°,∴∠BEF=∠C=70°,∵∠F=30°,∴∠A=70°-30°=40°.故选B.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了三角形外角的性质.二、填空题(本大题共有6小题,每小题3分,共18分)11、答案不唯一,如.【解析】
根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,则第三根木棒应>两边之差即3cm,而<两边之和1cm.【详解】设第三边木棒的长度为xcm,根据三角形的三边关系,得
10-7<x<10+7,
3<x<1.故答案是:答案不唯一,如8.【点睛】考查了三角形三边关系,能够熟练运用三角形的三边关系(“任意两边之和>第三边,任意两边之差<第三边”)求得第三边的取值范围.12、0,1,2【解析】
先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x,合并同类项得,3>x,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义。13、.【解析】
可以将x+y与x−y构成一个二元一次方程组.【详解】解:已知,则x+y=﹣1,x﹣y=﹣9,∴以为解的二元一次方程组为:,故答案为:.【点睛】本题考查二元一次方程组的解的定义,构造x+y和x−y比较简单.14、b+c<0【解析】“b的与c的和是负数”用不等式表示为:.故答案为:.15、x-5≥2x【解析】
“不小于x的2倍”应表示为大于或等于x的2倍.【详解】解:“x与5的差不小于x的2倍”,用不等式表示为x-5≥2x.故答案为:x-5≥2x【点睛】本题考查列不等式,解决本题的关键是理解“不小于0”用数学符号应表示为:“≥0”.16、11≤a<14【解析】
根据题意首先求得不等式3x-a≤1的解集,其中方程的解可用a表示,根据不等式的正整数解即可得到一个关于a的不等式组,即可求得a的取值范围.【详解】解:解不等式3x-a≤1得:,∵其正整数解恰好是1、2、3、4,∴,解得11≤a<14.故答案为:11≤a<14.【点睛】本题考查一元一次不等式的整数解,解答此题要先求出不等式的解集,再根据整数解的情况确定a的取值范围.本题要求熟练掌握不等式及不等式的解法,准确的理解整数解在不等式解集中的意义,并会逆推式子中有关字母的取值范围.三、解下列各题(本大题共8小题,共72分)17、(1)当点E在MN上时,∠MEN=∠CNE+∠AME=180°.证明见解析;(2)当点E在MN左侧时,∠MEN=∠AME+∠CNE.证明见解析;(3)当点E在MN右侧时,∠MEN=360°-(∠AME+∠CNE).证明见解析;【解析】
连结MN,根据平行线的性质,分三种情况讨论:(1)当点E在MN上时,∠MEN=∠CNE+∠AME=180°.(2)当点E在MN左侧时,∠MEN=∠AME+∠CNE.(3)当点E在MN右侧时,∠MEN=360°-(∠AME+∠CNE).【详解】连结MN,分三种情况:点E在MN上;⑵点E在MN左侧;⑶点E在MN右侧.如图所示:(1)当点E在MN上时,∠MEN=∠CNE+∠AME=180°.证明:∵AB∥CD,∴∠CNE+∠AME=180°.又∵∠MEN是平角,∴∠∠MEN=180°,∴∠MEN=∠AME+∠CNE=180°.(2)当点E在MN左侧时,∠MEN=∠AME+∠CNE.证明:过点E作∥∴,∵∴∠MEN=∠AME+∠CNE.(3)当点E在MN右侧时,∠MEN=360°-(∠AME+∠CNE).证明:过点E作EG∥AB∴,∵∴∠MEN=360°-(∠AME+∠CNE)【点睛】本题考查平行线的性质,解题的关键是分三种情况讨论问题.18、∠2=15°.【解析】
根据等腰直角三角形的性质得到过点C作CF//,根据平行公理可知//,根据平行线的性质可得即可求出【详解】△ABC是等腰直角三角形,则过点C作CF//,l1∥l2,则//,【点睛】本题考查平行线的性质,作出辅助线是解题的关键.19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.20、(1);(2);(3).理由见解析【解析】
(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1,∠CDE=∠2,据此推得∠ABE+∠CDE=∠BED即可.(2)首先根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CFD=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CFD,∠BED=∠ABE+∠CDE,据此推得∠BFD=∠BED.(3)首先过点E作EG∥CD,再根据AB∥CD,EG∥CD,推得AB∥CD∥EG,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,据此推得∠ABE+∠CDE+∠BED=360°;然后根据∠BFD=∠ABF+∠CDF,以及BF,DF分别平分∠ABE,∠CDE,推得2∠BFD+∠BED=360°即可.【详解】解:(1)如图1,作,,直线,,,,,即.(2)如图2,,,分别平分,,,,由(1),可得,.(3)如图3,过点作,,,,,,,,由(1)知,,又,分别平分,,,,,.故答案为:、.【点睛】本题考查平行线,熟练掌握平行线的性质及定义是解题关键.21、(1)x=1;(2).【解析】
(1)先移项,再系数化为1,即可得到答案;(2)先去分母,再去括号、移项、合并同类项,系数化为1,即可得到答案.【详解】(1)解:移项得:,合并同类项得:;解得:x=1;(2)解:去分母得:,去括号、移项、合并同类项得:,解得:.【点睛】本题考查解一元一次方程,解题的关键是掌握一元一次方程基本求解步骤.22、(1)5;(2)24;(3)油不够用,见解析【解析】
(1)根据图象可得,5小时时,机动车内的油从12升变为了36升,故5小时后加油;(2)根据加油前为12升,加油后为36升,进行计算即可;(3)首先计算出每小时的耗油量,再根据路程和速度计算出行驶240km的时间,然后用时间乘以耗油量可得所消耗的油量,再和油箱里的油量进行比较即可.【详解】解:(1)根据图象可得:机动车行驶5小时后加油;(2)36−12=24(L),故答案为:24;(3)油不够用,理由:每小时耗油量为:(42−12)÷5=6(L/h),280÷40=7(h),6×7=42(L),36<42,故油不够用.【点睛】此题主要考查了从函数图象获取信息的能力,关键是正确理解图象所表示的意义,从图中获得正确信息.23、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.【解析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】问题背景:EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考数学实践2024年试题及答案
- 网络服务的级别试题及答案分析
- 企业竞争策略与风险分析试题及答案
- 2025年软考设计师备考情绪管理试题及答案
- 2025农民土地流转合同范本
- 2025企业租赁合同标准范文
- 棉业公司范本章程
- 法学概论研究的国际视野与试题与答案
- 班级获奖经验的总结与反思计划
- 组织文件档案的秘书工作计划
- 《平凡的世界》中孙少平人物形象分析8500字(论文)
- 《结构式家庭疗法提升“丧偶式育儿”家庭亲密度的个案研究》
- 化学实验室废物处理管理制度
- 2024年六西格玛黄带认证考试练习题库(含答案)
- 第三章-足球-基本技术 足球运球绕杆 教学设计 人教版初中体育与健康七年级全一册
- 2024年同等学力英语考试真题及详解
- 会展活动场地布置与搭建技术规范手册
- “非遗”之首-昆曲经典艺术欣赏智慧树知到期末考试答案章节答案2024年北京大学
- 《药事管理学》习题库
- 水文地质技术员技能鉴定理论考试题库-下(多选、判断题)
- DZ∕T 0054-2014 定向钻探技术规程(正式版)
评论
0/150
提交评论