




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省娄底市冷水江市八年级数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A. B. C. D.2.若分式的值为0,则x的值是()A.2 B.-2 C.2或-2 D.03.将抛物线向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为()A. B.C. D.4.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A. B. C. D.5.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.小亮在同一直角坐标系内作出了和的图象,方程组的解是()A. B. C. D.7.不等式x≥2的解集在数轴上表示为()A. B.C. D.8.一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为()A.x≥2 B.x<2 C.x>2 D.x≤29.化简:()A.2 B.-2 C.4 D.-410.已知|a+1|+=0,则b﹣1=()A.﹣1 B.﹣2 C.0 D.1二、填空题(每小题3分,共24分)11.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为_____.12.如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=2,则菱形ABCD的周长是_____。13.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)14.如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.15.如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.16.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.选手甲乙丙丁方差(S2)0.0200.0190.0210.02217.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.18.已知则第个等式为____________.三、解答题(共66分)19.(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.20.(6分)已知:如图,AD是△ABC的中线,E为AD的中点,过点A作AF∥BC交BE延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接CE,在不添加任何辅助线的情况下,请直接写出图2中所有与△BDE面积相等的三角形.21.(6分)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.22.(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.23.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)24.(8分)(1)计算:.(2)解方程:x2﹣5x=025.(10分)如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D(1)如图1,当P为AB的中点时,求出AD的长(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式26.(10分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:当点E在BC上运动时,三角形的面积不断增大,最大面积===1;当点E在DC上运动时,三角形的面积为定值1.当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为2.故选B.考点:动点问题的函数图象.2、A【解析】
分式的值为0,分子为0,也就是x-2=0,即x=2,分母不能为0,x+2≠0,即x≠-2,所以选A.【详解】根据题意x-2=0且x+2≠0,所以x=2,选A.【点睛】本题考查分式的性质,分式的值为0,分子为0且分母不能为0,据此作答.3、A【解析】
将抛物线向左平移2单位,再向上平移3个单位,根据抛物线的平移规律“左加右减,上加下减”可得新抛物线的解析式为,故选A.4、B【解析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.【详解】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长==故选:B.【点睛】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.5、D【解析】
由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.【详解】解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<1时,直线必经过二、四象限,故知k<1,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.6、B【解析】
由数形结合可得,直线和的交点即为方程组的解,可得答案.【详解】解:由题意得:直线和的交点即为方程组的解,可得图像上两直线的交点为(-2,2),故方程组的解为,故选B.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.7、C【解析】
根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x≥2的解集表示在数轴上2右边且为包含2的数构成的集合,在数轴上表示为:故答案为:C.【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8、D【解析】
直接将解集在数轴上表示出来即可,注意实心和空心的区别【详解】数轴上读出不等式解集为x≤2,故选D【点睛】本题考查通过数轴读出不等式解集,属于简单题9、A【解析】
根据二次根式的性质解答.【详解】解:.故选:A.【点睛】本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.10、B【解析】
根据非负数的性质求出a、b的值,然后计算即可.【详解】解:∵|a+1|+=0,∴a+1=0,a-b=0,解得:a=b=-1,∴b-1=-1-1=-1.故选:B.【点睛】本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.二、填空题(每小题3分,共24分)11、4.8cm.【解析】
根据菱形的性质可得AB=5cm,根据菱形的面积公式可得S菱形ABCD=AC•BD=AB•DH,即DH==4.8cm.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点睛】本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.12、【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【详解】解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=1,AC⊥BD,在Rt△AOD中,∴菱形ABCD的周长为.【点睛】本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.13、不公平.【解析】试题分析:先根据题意画出树状图,然后根据概率公式求解即可.画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是所以这个游戏不公平.考点:游戏公平性的判断点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.14、62°【解析】
证明≌,根据全等三角形的性质得到AO=CO,根据菱形的性质有:AD=DC,根据等腰三角形三线合一的性质得到DO⊥AC,即∠DOC=90°.根据平行线的性质得到∠DCA=28°,根据三角形的内角和即可求解.【详解】四边形ABCD是菱形,AD//BC,在与中,,≌;AO=CO,AD=DC,∴DO⊥AC,∴∠DOC=90°.∵AD∥BC,∴∠BAC=∠DCA.∵∠BAC=28°,∠BAC=∠DCA.,∴∠DCA=28°,∴∠ODC=90°-28°=62°.故答案为62°【点睛】考查菱形的性质,等腰三角形的性质,平行线的性质,三角形的内角和定理等,比较基础,数形结合是解题的关键.15、.【解析】
先根据等腰三角形的性质求出的度数,再根据三角形外角的性质及等腰三角形的性质求出,及的度数.【详解】在中,,,,是的外角,,同理可得.故答案为:.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出、及的度数.16、乙【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故答案为:乙.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.17、【解析】
第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.【详解】解:第二个矩形的面积为第一个矩形面积的;第三个矩形的面积是第一个矩形面积的;…故第n个矩形的面积为第一个矩形面积的.又∵第一个矩形的面积为4,∴第n个矩形的面积为.故答案为:.【点睛】本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18、【解析】根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n个等式是:2n−2n−1=2n−1。三、解答题(共66分)19、(1)BD∥AC;(2);(3)【解析】
(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.【详解】(1),,,,点B为线段OA的中点,点D为OC的中点,即BD为的中位线,;(2)如图1,作于点F,取AB的中点G,则,,BD与AC的距离等于2,,在中,,,点G为AB的中点,,是等边三角形,.,设,则,根据勾股定理得:,,,点C在x轴的正半轴上,点C的坐标为;(3)如图2,当四边形ABDE为平行四边形时,,,点D为OC的中点,,,,,点C在x轴的正半轴上,点C的坐标为,设直线AC的解析式为.将,得,解得:.直线AC的解析式为.【点睛】此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.20、(1)证明见解析;(2)△AEF、△ABE、△ACE、△CDE.【解析】
(1)证明△AEF≌△DEB,可得AF=DB,再根据BD=CD可得AF=CD,再由AF//CD,根据有一组对边平行且相等的四边形是平行四边形即可证得结论;(2)根据三角形中线将三角形分成面积相等的两个三角形以及全等三角形的面积相等即可得.【详解】(1)D为BC的点、E为AD的中点BD=CD、AE=DEAF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∴△AEF≌△DEB,∴AF=DB,又∵BD=CD∴AF=CD,又AF∥BC,∴四边形ADCF是平行四边形;(2)∵△AEF≌△DEB,∴S△AEF=S△DEB,∵D为BC中点,∴S△CDE=S△DEB,∵E为AD中点,∴S△ABE=S△DEB,S△ACE=S△CDE=S△DEB,综上,与△BDE面积相等的三角形有△AEF、△ABE、△ACE、△CDE.【点睛】本题考查了平行四边形的判定,全等三角形的判定与性质,三角形中线的作用,熟练掌握相关知识是解题的关键.21、y=﹣x或y=﹣x.【解析】
根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).【详解】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB=×4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC=,作CF⊥OA于F,CE⊥OB于E,∴×AO•CF=,即×4×CF=,∴CF=.当y=时,x=﹣,则=﹣k,解得,k=﹣,∴直线l的解析式为y=﹣x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF=,解得直线l的解析式为y=﹣x.故答案为y=﹣x或y=﹣x.【点睛】本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.22、(1)84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.【解析】
(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,故笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号【点睛】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.23、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24、(1);(2)x1=0,x2=1.【解析】
(1)先把化简,然后合并即可;(2)利用因式分解法解方程.【详解】(1)原式=2﹣=;(2)x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).25、(1)1;(2)见解析;(3)【解析】
(1)如图1.根据平行线的性质得到∠A=∠B=90°,由折叠的性质得到∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,根据全等三角形的性质得到∠APD=∠EPD,推出于是得到结论;(2)如图2.过C作CG⊥AF交AF的延长线于G,推出四边形ABCG是矩形,得到矩形ABCG是正方形,求得CG=CB,根据折叠的性质得到∠CEP=∠B=90°,BC=CE,∠BCP=∠ECP,根据全等三角形的性质即可得到结论:(3)如图3,将△OQG沿OM翻折至△OPG,将△OQH沿ON翻折至△ORH,延长PG,RH交于S,推出四边形PORS是正方形,根据勾股定理即可得到结论.【详解】解:(1)如图1,连结,∵AD//BC.AB⊥BC,∴∠A=∠B=90°∵将△BPC沿PC翻折至△EPC,∴∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,∴∠DEP=90°∵当P为AB的中点,∴AP=BP∴PA=PE∵PD=PD∴,∴作于,设,则,由勾股定理得,解得,∴图1(2)如图2,作交延长线于,易证四边形为正方形∵∠A=∠B=∠G=90°,∴四边形ABCG是矩形,∵AB=BC,∴矩形ABCG是正方形,∴CG=CB.∵将△BPC沿PC翻折至△EPC,∴∠FED=90°,CG=CE,又∵CF=CF∴,∴∠ECF=∠GCF,∴∠BCP+∠GCF=∠PCE+∠FCE=45°∴∠PCF=45°;图2(3)如图3.将△OQG沿OM翻折至OOPG.将△OQH沿ON翻折至△ORH.延长PG,RH交于S,则∠POG=∠QOG.∠ROH=∠QOH,OP=OQ=OR=8,PG=QG=x,QH=RH=y,∴∠POR=2∠MON=90",∵GH⊥OQ.∴∠OQG=∠OQH=90°.∴∠P=∠R=90°,∴四边形PORS是正方形。∴PS=RS=8,∠S=90°,∴.GS=8-x,HS=8-y.∴.∴∴图3【点睛】本题考查了折叠的性质,全等三角形的判定和性质,正方形的判定和性质,正确的作出辅助线是解题的关键.26、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣3.【解析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络技术应用能力试题及答案
- 计算机信息处理总结分析试题及答案
- 材料疲劳损伤累积分析模型重点基础知识点
- 医院门诊火灾应急预案(3篇)
- 列车发生火灾应急预案(3篇)
- 车站街道火灾应急预案(3篇)
- 经济危机影响下的政治经济学问题试题及答案
- 公园停车场火灾应急预案(3篇)
- 2025年法学概论考试社会影响与试题及答案
- 2025年AI伦理与法律问题试题及答案
- 答案-国开电大本科《当代中国政治制度》在线形考(形考任务一)试题
- 绿植租摆服务投标方案(技术方案)
- 中学英语Unit1 thinking as a hobby课件
- 《意大利美食文化》课件
- 绿色中国智慧树知到课后章节答案2023年下华东理工大学
- 《施之以爱报之以恩》的主题班会
- 茶叶食用农产品承诺书(八篇)
- 组织行为学全套课件(罗宾斯版)
- 数据治理咨询项目投标文件技术方案
- 单梁起重机安全操作培训课件
- 动火证施工现场动火证申请书
评论
0/150
提交评论