




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省武安市八下数学期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.小明参加短跑训练,2019年2~5月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”.请你小明5年(60个月)后短跑的成绩为()(温馨提示:日前短跑世界记录为9秒58)月份2345成绩(秒)15.615.415.215A.3s B.3.8s C.14.8s D.预测结果不可靠2.在端午节到来之前,学校食堂推荐粽子专卖店的号三种粽子,对全校师生爱吃哪种粽子作调查,以决定最终的采购,下面的统计量中最值得关注的是()A.方差 B.平均数 C.众数 D.中位数3.某种出租车的收费标准是:起步价8元(即距离不超过,都付8元车费),超过以后,每增加,加收1.2元(不足按计).若某人乘这种出租车从甲地到乙地经过的路程是,共付车费14元,那么的最大值是().A.6 B.7 C.8 D.94.下列根式中不是最简二次根式的是()A. B. C. D.5.如图,在中,,,将绕点旋转,当点的对应点落在边上时,点的对应点,恰好与点、在同一直线上,则此时的面积为()A.240 B.260 C.320 D.4806.正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.50,EF⊥AB,垂足为F,则EF的长()A.1 B. C. D.7.平行四边形两个内角的度数的比是1:2,则其中较小的内角是()A. B. C. D.8.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分 D.两组对角分别相等9.在平面直角坐标系中,点P(﹣3,2)关于x轴的对称点的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣3,2)D.(﹣3,﹣2)10.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.13二、填空题(每小题3分,共24分)11.在△ABC中,∠C=90∘,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则△DEF的周长是12.如图,OA1=A1A2=A2A3=A3A4=…=An-1An=1,∠OA1A2=∠OA2A3=∠OA3a4=…=∠OAn-1An=90°(n>1,且n为整数).那么OA2=_____,OA4=______,…,OAn=_____.13.当时,二次根式的值是_________.14.地图上某地的面积为100cm1,比例尺是l:500,则某地的实际面积是_______m1.15.如图,矩形ABCD中,,,将矩形折叠,使点B与点D重合,点A的对应点为,折痕EF的长为________.16.已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.17.在比例尺为1:5000的地图上,量得甲,乙两地的距离为30cm,则甲,乙两地的实际距离是__________千米.18.如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.三、解答题(共66分)19.(10分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲82867875乙73808582丙81828079(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶4∶2∶1的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照1∶2∶3∶4的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?20.(6分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?21.(6分)如图,已知线段a,b,∠α(如图).(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)22.(8分)解不等式组:,并在数轴上表示出它的解集.23.(8分)如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,(1)填空:BD=______;(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.24.(8分)如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.已知:点D、E分别是△ABC的边AB、AC的中点.求证:DE∥BC,DE=BC.25.(10分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.26.(10分)探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:(1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;(1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【详解】解:(1)设y=kx+b依题意得,
解得,
∴y=-0.2x+1.
当x=60时,y=-0.2×60+1=2.
因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,
故选:D.【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、C【解析】
学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【详解】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、C【解析】
已知从甲地到乙地共需支付车费14元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【详解】设某人从甲地到乙地经过的路程是x千米,根据题意,得:8+1.2(x−3)⩽14,解得:x⩽8,即x的最大值为8km,故选C.【点睛】此题考查一元一次不等式的应用,解题关键在于列出方程4、C【解析】
最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C5、A【解析】
根据旋转的性质可得,因此可得为等腰三角形,故可得三角形的高,进而计算的面积.【详解】根据旋转的性质可得因此为等腰三角形,等腰三角形的高为:故选A.【点睛】本题主要考查图形的旋转和等腰三角形的性质,难点在于根据题意求出高.6、B【解析】
根据题意连接AC,与BD的交点为O.再根据,,可得AE是的角平分线,所以可得OE=EF,BE=,所以OB=,因此可计算出EF的长.【详解】解:根据题意连接AC,与BD的交点为O.四边形ABCD为正方形AE是的角平分线故选B.【点睛】本题主要考查正方形的性质,关键在于根据题意列出方程,这是考试的常考点,应当熟练掌握.7、C【解析】
根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,故该平行四边形的四个角的比值为1:2:1:2,所以可以计算出平行四边形的各个角的度数.【详解】根据平行四边形的相邻的两个内角互补知,设较小的内角的度数为x,则有:x+2x=180°∴x=60°,即较小的内角是60°故选C.【点睛】此题考查平行四边形的性质,解题关键在于设较小的内角的度数为x8、B【解析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.9、D【解析】根据两个点关于x轴的对称点的坐标特征.横坐标不变,纵坐标互为相反数.故选D.10、D【解析】
ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.二、填空题(每小题3分,共24分)11、6【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+BC∵点D、E、F分别是边AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=1∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案为:6.【点睛】本题考查了勾股定理和三角形中位线定理.12、2【解析】
根据勾股定理求出OA2,OA3,OA4,即可发现其内部存在一定的规律性,找出其内在规律即可解题.【详解】解:∵,,∴,则,,……所以,故答案为:,2,.【点睛】本题考查勾股定理、规律型:图形的变化类问题,解题的关键是学会探究规律,利用规律解决问题.13、3【解析】
根据题意将代入二次根式之中,然后进一步化简即可.【详解】将代入二次根式可得:,故答案为:3.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.14、1500【解析】
设某地的实际面积为xcm1,则100:x=(1:500)1,解得x=15000000cm1.15000000cm1=1500m1.∴某地的实际面积是1500平方米.15、【解析】
过点F作FH⊥AD于H,先利用矩形的性质及轴对称的性质证明DE=DF=BF,在Rt△DCF中通过勾股定理求出DF的长,再求出HE的长,再在Rt△HFE中利用勾股定理即可求出EF的长.【详解】解:如图,过点F作FH⊥AD于H,∵四边形ABCD为矩形,∴BC∥AD,∠C=90°,DC=AB=4,四边形DCFH为矩形,∴∠BFE=∠DEF,由折叠可知,∠BFE=∠DFE,BF=DF,∴∠DEF=∠DFE,∴DE=DF=BF,在Rt△DCF中设DF=x,则CF=BC-BF=6-x,∵DC2+CF2=DF2,∴42+(6-x)2=x2,解得,x=,∴DE=DF=BF=,∴CF=BC-BF=6-=,∵四边形DCFH为矩形,∴HF=CD=4,DH=CF=,∴HE=DE-DH=,∴在Rt△HFE中,故答案为【点睛】本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够灵活运用矩形的性质及轴对称的性质.16、24,26【解析】
将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.【详解】54−1=(5+1)(5−1)∵54−1能被20至30之间的两个整数整除,∴可得:5+1=26,5−1=24.故答案为:24,26【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则17、1.1【解析】
设相距30cm的两地实际距离为xcm,根据题意可得方程l:1000=30:x,解此方程即可求得答案,注意统一单位.【详解】解:设相距30cm的两地实际距离为xcm,
根据题意得:l:1000=30:x,
解得:x=110000,
∵110000cm=1.1km,
∴甲,乙两地的实际距离是1.1千米.
故答案为:1.1.【点睛】此题考查了比例尺的性质.此题比较简单,解题的关键是注意理解题意,根据题意列方程,注意统一单位.18、【解析】
如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.【详解】解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.∵四边形ABCD是正方形,∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,∵四边形EFGH是正方形,∴∠MEN=∠AEB=90°,∴∠AEM=∠BEN,∴△AEM≌△BEN(ASA),∴AM=BN,EM=EN,∠AME=∠BNE,∵AB=BC,EF=EH,∴FM=NH,BM=CN,∵∠FMB=∠AME,∠CNH=∠BNE,∴∠FMB=∠CNH,∴△FMB≌△HNC(SAS),∴∠MFB=∠NHC,∵∠EFO+∠EOF=90°,∠EOF=∠POH,∴∠POH+∠PHO=90°,∴∠OPH=∠BPC=90°,∵∠DBP=75°,∠DBC=45°,∴∠CBP=30°,∵BC=AB=2,∴PB=BC•cos30°=,PR=PB=,RC=PR•tan30°=,∵∠RTD=∠TDC=∠DCR=90°,∴四边形TDCR是矩形,∴TD=CR=,TR=CD=AB=2,在Rt△PDT中,PD2=DT2+PT2=,故答案为.【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(共66分)19、(1)应该录取丙;(2)应该录取甲;(3)应该录取乙【解析】
(1)分别算出甲乙丙的平均数,比较即可;(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3)由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.【详解】(1)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵80.5>80.25>80∴应该录取丙(2)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵82.1>81>79.1∴应该录取甲(3)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵81.6>80.1>78.8∴应该录取乙.【点睛】本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.20、30(海里/时)【解析】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形,可以通过勾股定理计算出AB的长度,然后求乙船的速度.【详解】通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形又AC为甲船航行的路程,则AC=16×3=48由可知:AB=所以乙船的航速为90÷3=30(海里/时)故答案为30(海里/时)【点睛】本题考察了方位角的判断,构造出直角三角形,运用勾股定理解题,需要清楚的是勾股定理是指,直角三角形中两个直角边的平方和等于斜边的平方.21、(1)无数;(2)图形见解析;1.【解析】
(1)内角不固定,有无数个以线段a,b为一组邻边作平行四边形;(2)作∠MAN=a,以A为圆心,线段a和线段b为半径画弧分别交射线AN和AM于点D和B,以D为圆心,线段b为半径画弧,以B为圆心,线段a为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD就是所求作的图形.【详解】解:(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作无数个,故答案为:无数;(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD即为所求.故答案为:1.【点睛】此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.22、﹣2<x≤3【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可。【详解】解:,解不等式①得:x>﹣2,解不等式②得:x≤3,所以不等式组的解集为﹣2<x≤3,在同一数轴上分别表示出它们的解集得【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23、(1)BD=2(2)(3)120°30°【解析】.分析:(1)根据勾股定理计算即可;(2)连接AP,当AP与PE在一条线上时,PE+PC最小,利用勾股定理求出最小值;(3)分两种情况考虑:①当E在BC延长线上时,如图2所示,△PCE为等腰三角形,则CP=CE;②当E在BC上,如图3所示,△PCE是等腰三角形,则PE=CE,分别求出∠PEC的度数即可.详解:(1)BD==2;(2)如图1所示:当AP与PE在一条线上时,PE+PC最小,∵AB=,BE=t,∴PE+PC的最小值为,(3)分两种情况考虑:①当点E在BC的延长线上时,如图2所示,△PCE是等腰三角形,则CP=CE,∴∠CPE=∠CEP,∴∠BCP=∠CPE+∠CEP=2∠CEP,∵在正方形ABCD中,∠ABC=90°,∴∠PBA=∠PBC=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP=2∠CEP,∵∠BAP+∠PEC=90°,∴2∠PEC+∠PEC=90°,∴∠PEC=30°;②当点E在BC上时,如图3所示,△PCE是等腰三角形,则PE=CE,∴∠CPE=∠PCE,∴∠BEP=∠CPE+∠PCE=2∠ECP,∵四边形ABCD是正方形,∴∠PBA=∠PBC=45°,又AB=BC,BP=BP,∴△ABP≌△CBP,∴∠BAP=∠BCP,∵∠BAP+∠AEB=90°,∴2∠BCP+∠BCP=90°,∴∠BCP=30°,∴∠AEB=60°,∴∠PEC=180°-∠AEB=120°.点睛:本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,两点之间线段最短及分类讨论的数学思想,运用勾股定理是解(1)的关键,确定点P的位置是解(2)的关键,分两种情况讨论是解(3)的关键.24、见解析【解析】
延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.【详解】证明:延长DE至F,使EF=DE,连接CF∵E是AC中点,∴AE=CE,在△ADE和△CFE中,∴△ADE≌△CFE(SAS),∴AD=CF,∠ADE=∠F∴BD∥CF,∵AD=BD,∴BD=CF∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DF∥BC,DF=BC,∴DE∥CB,DE=BC.【点睛】本题考查了三角形的中位线定理的证明,用到的知识点有全等三角形的判定和性质以及平行四边形的判定和性质.25、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.【解析】
(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.【详解】(1)由题意得:vt=900,即:v=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 竞争力提升中的风险管理策略与实施试题及答案
- 跨国公司合规管理的法律要求试题及答案
- 瞳孔变形的临床护理
- 社区市民学校工作总结(9篇)
- 行政法学学习路线试题与答案
- 表面麻醉剂行业发展动态与市场前景解析
- 行政垄断协议书
- 韩国租房协议书
- 起草赌约协议书
- 航华离婚协议书
- 2025届高考作文复习:时评类作文分析 课件
- 老年期常见心理问题的护理(老年护理课件)
- T-CAICI 89-2024 通信建设安全生产标准化基本要求
- 《民法典》2024年知识考试题库(含答案)
- 江苏省启东市高中数学 第二章 平面向量 第7课时 2.3.2 向量的坐标表示(2)教案 苏教版必修4
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 高中英语外研版 单词表 必修1
- 临床流行病学与循证医学-临床实践指南的制定与评价
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
- 2023届高考地理一轮复习跟踪训练-石油资源与国家安全
- 14.有趣的光影(课件)-美术六年级下册
评论
0/150
提交评论