广东省广州市广州大附中2025年数学八下期末考试试题含解析_第1页
广东省广州市广州大附中2025年数学八下期末考试试题含解析_第2页
广东省广州市广州大附中2025年数学八下期末考试试题含解析_第3页
广东省广州市广州大附中2025年数学八下期末考试试题含解析_第4页
广东省广州市广州大附中2025年数学八下期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市广州大附中2025年数学八下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是152.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60° B.∠A=120° C.∠C+∠D=180° D.∠C+∠A=180°3.二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.4.已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为()A.b=3,c=﹣2 B.b=﹣2,c=3 C.b=2,c=﹣3 D.b=﹣3,c=﹣25.若,则下列不等式成立的是()A. B. C. D.6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.7.已知菱形的两条对角线的长分别是6和8,则菱形的周长是()A.36 B.30 C.24 D.208.如图所示,在平行四边形中,对角线和相交于点,交于点,若,则的长为()A. B. C. D.9.一个正多边形的内角和为,则这个正多边形的每一个外角的度数是()A. B. C. D.10.用配方法解一元二次方程,下列变形正确的是()A. B.C. D.11.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10 B.7或10 C.4 D.7或412.下列函数中,一次函数是().A. B. C. D.二、填空题(每题4分,共24分)13.若是方程的两个实数根,则_______.14.若关于x的一元一次不等式组有解,则m的取值范围为__________.15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.16.等式成立的条件是_____.17.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.18.若分式的值为0,则__.三、解答题(共78分)19.(8分)如图,矩形的两边,的长分别为3,8,且点,均在轴的负半轴上,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,且点的横坐标为,则点的横坐标为______(用含的代数式表示),点的纵坐标为______,反比例函数的表达式为______.20.(8分)钓鱼岛是我国的神圣领土,中国人民维护国家领土完整的决心是坚定的,多年来,我国的海监、渔政等执法船定期开赴钓鱼岛巡视.某日,我海监船(A处)测得钓鱼岛(B处)距离为20海里,海监船继续向东航行,在C处测得钓鱼岛在北偏东45°的方向上,距离为10海里,求AC的距离.(结果保留根号)21.(8分)如图1,在正方形中,是对角线,点在上,是等腰直角三角形,且,点是的中点,连结与.(1)求证:.(2)求证:.(3)如图2,若等腰直角三角形绕点按顺时针旋转,其他条件不变,请判断的形状,并证明你的结论.22.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.23.(10分)先化简,再求值:,其中x=,y=.24.(10分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;25.(12分)小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.(2)解完“思考题”后,小聪提出了如下两个问题:①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.26.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:(1)△ACE≌△BCD;(2).

参考答案一、选择题(每题4分,共48分)1、B【解析】(1)80出现的次数最多,所以众数是80,A正确;(2)把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;(3)平均数是80,C正确;(4)极差是90-75=15,D正确.故选B2、D【解析】

解:∵四边形ABCD是平行四边形,∴∠D=∠B=60°.故A正确;∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;∵AD∥BC,∴∠C+∠D=180°,故C正确;∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,故选D.3、B【解析】

根据二次根式的被开方数是非负数解题.【详解】解:依题意,得

a-1≥0,

解得,a≥1.

故选:B.【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4、C【解析】

因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c的值即可.【详解】解:根据题意得:x2+bx+c=(x+3)(x-1)=x2+2x-3,则b=2,c=﹣3,故选:C.【点睛】本题考查多项式与多项式相乘得到的结果相等,则要求等号两边同类项的系数要相同,熟练掌握多项式的乘法法则是解决本题的关键.5、A【解析】

根据不等式的基本性质逐一判断即可.【详解】A.将已知不等式的两边同时加上5,得,故本选项符合题意;B.将已知不等式的两边同时乘,得,故本选项不符合题意;C.将已知不等式的两边同时乘,得,故本选项不符合题意;D.不能得出,故本选项不符合题意.故选A.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.6、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.7、D【解析】解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.8、B【解析】

由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.【详解】解:∵四边形ABCD是平行四边形,

∴OA=OC,AD∥BC,

∵OE∥BC,

∴OE∥AD,

∴OE是△ACD的中位线,

∵OE=4cm,

∴AD=2OE=2×4=8(cm).

故选:B.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.9、A【解析】

根据多边形的内角和公式求出边数,从而求得每一个外角的度数.【详解】多边形的内角和为,即解得:∴该多边形为正八边形∴正八边形的每一个外角为:故选:A【点睛】本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.10、B【解析】

移项、方程两边同时加上一次项系数一半的平方,根据完全平方公式进行配方即可.【详解】移项,得:配方,即,故选B.【点睛】考查配方法解一元二次方程,解题的关键是把方程的左边化成含有未知数的完全平方式,右边是一个非负数形式.11、C【解析】

根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时【详解】当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C【点睛】本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断12、A【解析】

根据一次函数的定义分别进行判断即可.【详解】解:.是一次函数,故正确;.当时,、是常数)是常函数,不是一次函数,故错误;.自变量的次数为,不是一次函数,故错误;.属于二次函数,故错误.故选:.【点睛】本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.二、填空题(每题4分,共24分)13、10【解析】试题分析:根据韦达定理可得:a+b=2,ab=-3,则=4-2×(-3)=10.考点:韦达定理的应用14、m.【解析】

首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【详解】,解①得:x<2m,解②得:x>2﹣m,根据题意得:2m>2﹣m,解得:m.故答案为:m.【点睛】本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15、1【解析】分析:由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.详解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=1,∴S四边形AFBD=1.故答案为1点睛:本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.16、﹣1≤a<3【解析】

根据负数没有算术平方根列出不等式组,求出解集即可.【详解】依题意,得:,解得:﹣1≤a<3【点睛】此题考查二次根式的乘除法,解题关键在于掌握运算法则17、1【解析】

根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.【详解】解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,

∴∠DBO=∠OBC,∠ECO=∠OCB,

∵DE∥BC,

∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,

∴DB=DO,OE=EC,

∵DE=DO+OE,

∴DE=BD+CE=1.

故答案为1.【点睛】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.18、2【解析】

根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:,解得:,故答案为:2;【点睛】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.三、解答题(共78分)19、(1);(2),1,.【解析】

(1)根据矩形的性质,可得A,E的坐标,根据待定系数法即可求解;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F的占比,根据待定系数法,可得m的值,即可求解.【详解】解:(1)∵四边形是矩形,∴,即轴,,,∵是的中点,∴,∵点坐标为,∴,∴,∴点的坐标为.把点代入反比例函数得,,∴.(2)如图,连接AE,∵点E的横坐标为a,BC=3∴点F的横坐标为a-3,又∵在Rt△ADE中,AE=∴AF=AE+2=7,BF=8-7=1∴点F的纵坐标为1,∴E(a,4),F(a-3,1)∵反比例函数经过E,F∴4a=1(a-3)解得a=-1,∴E(-1,4)∴k=-4,故反比例函数的解析式为【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知勾股定理、反比例函数的图像与性质.20、AC的距离为(10﹣10)海里【解析】

作BD⊥AC交AC的延长线于D,根据正弦的定义求出BD、CD的长,根据勾股定理求出AD的长,计算即可.【详解】作BD⊥AC交AC的延长线于D,由题意得,∠BCD=45°,BC=10海里,∴CD=BD=10海里,∵AB=20海里,BD=10海里,∴AD==10,∴AC=AD﹣CD=10﹣10海里.答:AC的距离为(10﹣10)海里.【点睛】本题考查的是解直角三角形的应用-方向角问题,熟记锐角三角函数的定义、正确标注方向角、正确作出辅助线是解题的关键.21、(1)证明见解析;(2)证明见解析;(3)△CEF是等腰直角三角形.【解析】

(1)根据直角三角形斜边上的中线等于斜边的一半,可得EF=DF=DG,CF=DF=DG,从而得到结论;(2)根据等边对等角可得再根据三角形的一个外角等于和它不相邻的两个内角和求出然后根据正方形的对角线平分一组对角求出,求出,从而得证;(3)延长交于,先求出,再根据两直线平行,内错角相等,求出,然后利用ASA证明和全等,根据全等三角形对应边相等,可得EG=DH,EF=FH,再求出CE=CH,然后根据等腰三角形三线合一的性质证明即可.【详解】解:(1)证明:,点是的中点,,∵正方形中,,点是的中点,,;(2)证明:,,,在正方形中,,,;(3)解:是等腰直角三角形.理由如下:如图,延长交于,∵,,,,∵点是的中点,,在和中,,,,,,即,(等腰三角形三线合一),,∴△CEF是等腰直角三角形.【点睛】本题综合考查了直角三角形斜边上的中线性质,等腰直角三角形,正方形的性质,全等三角形的判定和性质等知识,在证明过程中,分解出基础图形是解题的关键.22、2km/h【解析】

求的汽车原来的平均速度,路程为410km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了1h.等量关系为:原来时间﹣现在时间=1.【详解】设汽车原来的平均速度是xkm/h,根据题意得:,解得:x=2.经检验:x=2是原方程的解.答:汽车原来的平均速度2km/h.23、x+y,.【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.试题解析:原式===x+y,当x=,y==2时,原式=﹣2+2=.24、(1)、证明过程见解析;(2)、60°.【解析】试题分析:根据正方形的性质得出AD∥BF,结合AE=CF可得四边形ACFE是平行四边形,从而得出EF∥AC;连接BG,根据EF∥AC可得∠F=∠ACB=45°,根据∠GCF=90°可得∠CGF=∠F=45°可得CG=CF,根据AE=CF可得AE=CG,从而得出△BAE≌△BCG,即BE=EG,得出△BEG为等边三角形,得出∠BEF的度数.试题解析:(1)∵四边形ABCD是正方形∴AD∥BF∵AE="CF"∴四边形ACFE是平行四边形∴EF∥AC(2)连接BG∵EF∥AC,∴∠F=∠ACB=45°,∵∠GCF=90°,∴∠CGF=∠F=45°,∴CG=CF,∵AE=CF,∴AE=CG,∴△BAE≌△BCG(SAS)∴BE=BG,∵BE=EG,∴△BEG是等边三角形,∴∠BEF=60°考点:平行四边形的判定、矩形的性质、三角形全等的应用.25、(1)(x+0.7)2+22=2.52,0.8,-2.2(舍去),0.8;(2)【问题一】不会是0.9米,理由见解析;【问题二】有可能,理由见解析.【解析】

(1)直接把B1C、A1C、A1B1的值代入进行解答即可;

(2)把(1)中的0.4换成0.9可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入(1)中方程,求出x的值符合题意.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论