黑龙江省佳木斯市同江市场直中学2025届八下数学期末教学质量检测模拟试题含解析_第1页
黑龙江省佳木斯市同江市场直中学2025届八下数学期末教学质量检测模拟试题含解析_第2页
黑龙江省佳木斯市同江市场直中学2025届八下数学期末教学质量检测模拟试题含解析_第3页
黑龙江省佳木斯市同江市场直中学2025届八下数学期末教学质量检测模拟试题含解析_第4页
黑龙江省佳木斯市同江市场直中学2025届八下数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省佳木斯市同江市场直中学2025届八下数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平行四边形ABCD中,若∠A=50A.∠B=130∘ B.∠B+∠C=180∘2.如图,矩形ABCD中,O是对角线AC的中点,OE⊥AC,交AD于点E,连接CE.若AB=2,BC=4,则CE的长为()A.2.5 B.2.8 C.3 D.3.53.已知一次函数y1=k1x+b1与yA.x<1 B.x>1 C.x<2 D.x>24.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.一元二次方程x2A.x0 B.x1 C.x0,x1 D.无实根6.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.5+ D.5+7.对于一次函数y=-2x+4,下列结论错误的是()A.函数的图象与x轴的交点坐标是0,4B.函数值随自变量的增大而减小C.函数的图象不经过第三象限D.函数的图象向下平移4个单位长度得到y=-2x的图象8.李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()平均数中位数众数方差8.5分8.3分8.1分0.15A.平均数 B.众数 C.方差 D.中位数9.已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y110.如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③.其中不正确的结论有()A.1个 B.2个 C.3个 D.0个二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.12.已知一组数据1,2,0,﹣1,x,1的平均数是1,那么这组数据的方差是__.13.一次函数y=2x-6的图像与x轴的交点坐标为.14.一个等腰三角形的周长为12cm,设其底边长为ycm,腰长为xcm,则y与x的函数关系是为_____________________.(不写x的取值范围)15.在平面直角坐标系中有一点,则点P到原点O的距离是________.16.已知,为实数,且满足,则_____.17.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_______.18.已知关于x的方程的系数满足,且,则该方程的根是______.三、解答题(共66分)19.(10分)已知a,b分别是6的整数部分和小数部分.(1)求a,b的值;(2)求3ab2的值.20.(6分)在菱形ABCD中,AC是对角线.(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证:∠APD=∠EBC.21.(6分)今年人夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在处测得航标在北偏东方向上,前进米到达处,又测得航标在北偏东方向上,如图在以航标为圆心,米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?()22.(8分)如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.(1)求证AD=ED;(2)若AC=AB,DE=3,求AC的长.23.(8分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.24.(8分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5或8.25 D.4.5或8.525.(10分)已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A.C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F,当点E落在线段CD上时(如图),(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;26.(10分)某校实行学案式教学,需印制若干份教学学案.印刷厂有,甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°而∠A=50°,∴∠C=∠A=50°,∠B=∠D=130°,∴D选项错误,故选D.【点睛】本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.2、A【解析】

利用线段的垂直平分线的性质,得到与的关系,再由勾股定理计算出的长即可.【详解】解:四边形是矩形,,,,,,设,则,在中,根据勾股定理可得,即,解得,故选:.【点睛】本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于的方程时有时出现错误,而误选其它选项.3、A【解析】

由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1【详解】两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式k1x+b1<故选A.【点睛】本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.4、D【解析】

直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、既是中心对称图形也是轴对称图形,故此选项正确.

故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5、C【解析】

先移项得到x2-x=0,再把方程左边分解因式得到xx-1=0,原方程转化为x=0【详解】∵x∴xx-1∴x=0或x-1=0,∴x=0,x=1.故选:C.【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.6、C【解析】

过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C作CM⊥AB,垂足为M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是线段AC的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC等边三角形,∴CD=AD=AC=4,∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.【点睛】本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.7、A【解析】

分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故A选项错误;B、因为一次函数y=-2x+4中k=-2<0,因此函数值随x的增大而减小,故C选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.8、D【解析】

由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义,结合去掉一个最高分和一个最低分,不难得出答案.【详解】解:中位数是将一组数从小到大的顺序排列,取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选D.【点睛】本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.9、B【解析】

先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【详解】∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.∵﹣1<1<3,∴y1<0<y1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10、A【解析】

先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,∴正确的是①②,故选A.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.二、填空题(每小题3分,共24分)11、()n﹣1【解析】

根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形AnBnCnDn的面积=()n﹣1,故答案为()n﹣1.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.12、【解析】

先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…xn的平均数为Z,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【详解】x=1×6﹣1﹣2﹣0﹣(﹣1)﹣1=3s2=[(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2+(1﹣1)2]=.故答案为.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13、(3,0).【解析】试题分析:把y=0代入y=2x-6得x=3,所以一次函数y=2x-6的图像与x轴的交点坐标为(3,0).考点:一次函数的图像与x轴的交点坐标.14、y=12-2x【解析】

根据等腰三角形周长公式可求出底边长与腰的函数关系式,【详解】解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:y=12-2x.故答案为:y=12-2x.【点睛】本题考查一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.15、13【解析】

根据点的坐标利用勾股定理,即可求出点P到原点的距离【详解】解:在平面直角坐标系中,点P到原点O的距离为:,故答案为:13.【点睛】本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.16、4【解析】

直接利用二次根式有意义的条件得出、的值,进而得出答案.【详解】、为实数,且满足,,,则.

故答案为:.【点睛】此题主要考查了二次根式有意义的条件,正确得出、的值是解题关键.17、.【解析】

根据众数为1,求出a的值,然后根据平均数的概念求解:∵众数为1,∴a=1.∴平均数为:.考点:1.众数;2.平均数.18、和1.【解析】

把x=1,和x=-1代入方程正好得出等式4a-1b-c=0和c-a-b=0,即可得出方程的解是x=1,x=-1,即可得出答案.【详解】∵ax1-bx-c=0(a≠0),把x=1代入得:4a-1b-c=0,即方程的一个解是x=1,把x=-1代入得:c-a-b=0,即方程的一个解是x=-1,故答案为:-1和1.【点睛】本题考查了一元二次方程的解的应用,主要是考查学生的理解能力.三、解答题(共66分)19、(1)a=3,b=3-;(2)6-1.【解析】

(1)先求出范围,再两边都乘以-1,再两边都加上6,即可求出a、b;(2)把a、b的值代入求出即可.【详解】(1)∵2<<3,∴-3<-<-2,∴3<6-<4,∴a=3,b=6--3=3-;(2)3a-b2=3×3-(3-)2=9-9+6-1=6-1.【点睛】本题考查了估算无理数的大小和有理数的混合运算的应用,主要考查学生的计算能力.20、(1)24;110°;35°;(2)见解析.【解析】

(1)由菱形的性质可求解;(2)由“SAS”可得△DCE≌△BCE,可得∠CDP=∠CBE,由平行线的性质可得∠CDP=∠APD=∠CBE.【详解】解:(1)∵四边形ABCD是菱形∴AB=BC=CD=AD=6,∠DAB+∠ADC=180°,∠DCA=∠DCB=∠DAB=35°∴菱形ABCD的周长=4×6=24,∠ADC=180°-70°=110°,故答案为:24,110°,35°(2)证明:∵菱形ABCD∴CD//AB,CD=CB,CA平分∠BCD∴∠CDE=∠APD,∠ACD=∠ACB∵CD=CB,∠BCE=∠DCE,CE=CE∴△CBE≌△CDE(SAS)∴∠CBE=∠CDE∴∠CBE=∠APD.【点睛】本题考查了菱形的性质,全等三角形判定和性质,熟练运用菱形的性质是本题的关键.21、没有被浅滩阻碍的危险【解析】

过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.【详解】过点作,设垂足为,在中,在中,米米.米>米,故没有危险.答:若船继续前进没有被浅滩阻碍的危险.【点睛】本题考查了解直角三角形的知识,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22、(1)证明见解析;(2)6.【解析】

(1)由AE是∠BAC的角平分线可得∠DAE=∠BAE,由DE∥AB,可得∠DEA=∠EAB,则∠DEA=∠DAE,可得结论.

(2)根据等腰三角形三线合一可得AE⊥BC,可证∠C=∠CED则CD=DE,即可求AC的长.【详解】证明:(1)∵AE是∠BAC的角平分线∴∠DAE=∠BAE,∵DE∥AB∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE-;(2)∵AB=AC,AE是∠BAC的角平分线∴AE⊥BC∴∠C+∠CAE=90°,∠CED+∠DEA=90°,∵∠CAE=∠DEA,∴∠C=∠CED,∴DE=CD,∴AD=DE=CD=3,∴AC=6.故答案为(1)证明见解析;(2)6.【点睛】本题考查等腰三角形的性质和判定,平行线的性质,关键是利用这些性质解决问题.23、(1)(1,2)(2)1【解析】分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.详解:(1)∵,∴,∴E(1,2);(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,∴C(2,0),∴AC=2﹣(﹣1)=1,==1.点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.24、D【解析】

根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【详解】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.25、(1)见解析;(2)【解析】

(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.【详解】(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论