四川省阳东辰国际学校2025届数学八下期末教学质量检测模拟试题含解析_第1页
四川省阳东辰国际学校2025届数学八下期末教学质量检测模拟试题含解析_第2页
四川省阳东辰国际学校2025届数学八下期末教学质量检测模拟试题含解析_第3页
四川省阳东辰国际学校2025届数学八下期末教学质量检测模拟试题含解析_第4页
四川省阳东辰国际学校2025届数学八下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省阳东辰国际学校2025届数学八下期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.五边形的内角和是()A.180° B.360° C.540° D.720°2.用反证法证明“四边形中至少有一个角是钝角或直角”,则应先假设()A.至少有一个角是锐角 B.最多有一个角是钝角或直角C.所有角都是锐角 D.最多有四个角是锐角3.如果,在矩形中,矩形通过平移变换得到矩形,点都在矩形的边上,若,且四边形和都是正方形,则图中阴影部分的面积为()A. B. C. D.4.菱形的两条对角线长为6cm和8cm,那么这个菱形的周长为A.40cm B.20cm C.10cm D.5cm5.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB得到线段A’B’(点A与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为(

)A.(4,2) B.(5,2) C.(6,2) D.(5,3)6.若是完全平方式,则符合条件的k的值是()A.±3 B.±9 C.-9 D.97.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C. D.8.等腰三角形的底边和腰长分别是10和12,则底边上的高是()A.13 B.8 C. D.9.下面二次根式中,是最简二次根式的是()A. B. C. D.10.若平行四边形中两个内角的度数比为1:3,则其中较小的内角为()A.90° B.60° C.120° D.45°二、填空题(每小题3分,共24分)11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED.12.把多项式因式分解成,则的值为________.13.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.14.计算:____.15.如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为_____.16.已知,那么的值为____________.17.如图,在平行四边形中,对角线,相交于点,,点,分别是,的中点,连接,于点,交于点,若,,则线段的长为__.18.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)三、解答题(共66分)19.(10分)计算:(1);(2)(﹣3)×.20.(6分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求直线BP的解析式.21.(6分)如图,已知矩形ABCD,用直尺和圆规进行如下操作:①以点A为圆心,以AD的长为半径画弧交BC于点E;②连接AE,DE;③作DF⊥AE于点F.根据操作解答下列问题:(1)线段DF与AB的数量关系是.(2)若∠ADF=60°,求∠CDE的度数.22.(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.23.(8分)世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机,为了倡导“节约用水,从我做起”,某县政府决定对县直属机关300户家庭一年的月平均用水量进行调查,调查小组抽查了部分家庭月平均用水量(单位:吨),绘制条形图和扇形图如图所示.(1)请将条形统计图补充完整;(2)这些家庭月平均用水量数据的平均数是_______,众数是______,中位数是_______;(3)根据样本数据,估计该县直属机关300户家庭的月平均用水量不超过12吨的约有多少户.24.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.(10分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?26.(10分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表(1)张明第2次的成绩为__________秒;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.【点睛】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.2、C【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:所有角都是锐角.故选C.【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3、A【解析】

设两个正方形的边长为x,表示出MK、JM,然后根据三个面积的关系列出方程并求出x,再求出S3.【详解】设两个正方形的边长为x,则MK=BF-EJ=4-x,JM=BE-KF=3-x,∵4S3=S1+S2,∴4(4-x)(3-x)=2x2,整理得,x2-14x+24=0,解得x1=2,x2=12(舍去),∴S1=S2=22=4,∴AB=BE+x=3+2=5,BC=BF+x=4+2=6,∴S矩形ABCD=AB•BC=30,∵4S3=S1+S2,∴S3=(S1+S2)=×(4+4)=2.故选A.【点睛】】本题考查了矩形的性质,平移的性质,平移前后的两个图形能够完全重合,关键在于表示出MK、JM并列出方程.4、B【解析】∵菱形的两条对角线长为6cm和8cm,∴AO=4cm,BO=3cm.,∴这个菱形的周长为5×4=20cm.故选B.5、B【解析】试题解析:根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选B.6、D【解析】

根据是一个完全平方式,可得,据此求解.【详解】解:∵是一个完全平方式∴∴故选:D【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.7、D【解析】分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM=

AC=5

,tan∠BAC=,可得EM=

;在Rt△AME中,由勾股定理求得AE=

=1.2.故选:B.点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.8、D【解析】

先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【详解】解:作底边上的高并设此高的长度为x,由等腰三角形三线合一的性质可得高线平分底边,根据勾股定理得:52+x2=122,解得x=【点睛】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.9、C【解析】

根据最简二次根式的概念进行判断即可.【详解】A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.10、D【解析】

首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.【详解】解:∵平行四边形中两个内角的度数之比为1:3,

∴设平行四边形中两个内角分别为x°,3x°,

∴x+3x=180,

解得:x=45,

∴其中较小的内角是45°.

故选D.【点睛】本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.二、填空题(每小题3分,共24分)11、AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,

∴BD-CD=CE-CD,

∴BC=DE,

①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).12、【解析】

根据多项式的乘法法则计算,然后即可求出m的值.【详解】∵=x2+6x+5,∴m=6.故答案为:6.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解是乘法运算的逆运算.13、1【解析】试题解析:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=41°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==1cm.故答案为1.14、1【解析】

先算括号内,再算除法即可.【详解】原式=.故答案为:1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15、1【解析】分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出,构建方程求出x即可解决问题;详解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴,∴,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,∴S△ABC=•BC•AD=×10×12=1.故答案为1.点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.16、1【解析】

根据非负数的性质先求出与的值,再根据有理数的乘方运算进一步计算即可.【详解】∵,∴,,∴,,∴,故答案为:1.【点睛】本题主要考查了非负数的性质以及有理数的乘方运算,熟练掌握相关概念是解题关键.17、.【解析】

连接BE.首先证明△EMC,△EMB都是等腰直角三角形,再证明△ENF≌△MNB,得到EN=MN=5,由勾股定理即可得出BM的长,即可得BC的长度.【详解】设,点、点分别是、的中点,是的中位线,,,,四边形是平行四边形,,,,,,是等腰直角三角形,,连接,,,,,易得,,,中,由勾股定理得:,即,解得,,.故答案为:.【点睛】本题考查平行四边形的性质,三角形的中位线定理,勾股定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.18、【解析】

连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,∴AC=a,CF=b,由勾股定理得,AF==,∵∠ACF=90°,H是AF的中点,∴CH=,故答案为:.【点睛】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.三、解答题(共66分)19、(1);(2)3【解析】

(1)异分母分式相加减,先通分变为同分母分式,然后再加减.(2)利用二次根式的乘法法则运算;【详解】(1)解:原式==,=;(2)解:原式==3.【点睛】考查了二次根式的运算,解题关键是熟记其运算顺序.20、(1)(-,0);(0,1);(2)y=x+1或y=-x+1.【解析】试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;(2)由OA=,OP=2OA得到OP=1,分类讨论:当点P在x轴正半轴上时,则P点坐标为(1,0);当点P在x轴负半轴上时,则P点坐标为(-1,0),然后根据待定系数法求两种情况下的直线解析式.试题解析:(1)把x=0代入y=2x+1,得y═1,则B点坐标为(0,1);把y=0代入y=2x+1,得0=2x+1,解得x=-,则A点坐标为(-,0);(2)∵OA=,∴OP=2OA=1,当点P在x轴正半轴上时,则P点坐标为(1,0),设直线BP的解析式为:y=kx+b,把P(1,0),B(0,1)代入得解得:∴直线BP的解析式为:y=-x+1;当点P在x轴负半轴上时,则P点坐标为(-1,0),设直线BP的解析式为y=kx+b,把P(-1,0),B(0,1)代入得解得:k=1,b=1所以直线BP的解析式为:y=x+1;综上所述,直线BP的解析式为y=x+1或y=-x+1.考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.21、(1)DF=AB;(2)15°【解析】

(1)利用角平分线的性质定理证明DF=DC即可解决问题;(2)只要证明∠EDCC=∠EDF即可;【详解】解:(1)结论:DF=AB.理由:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠C=90°,∵AD=AE,∴∠ADE=∠AED=∠DEC,∵DF⊥AE,DC⊥BC,∴DF=DC=AB.故答案为DF=AB.(2)∵DE=DE,DF=DC,∴Rt△DEF≌△DEC,∴∠EDF=∠EDC,∵∠ADF=60°,∠ADC=90°,∴∠CDF=30°,∴∠CDE=∠CDF=15°.【点睛】本题考查基本作图、全等三角形的判定和性质、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1)当t=1.5s时,四边形ABQP是平行四边形,理由详见解析;(1)5.4cm1.【解析】

(1)求出和,根据平行四边形的判定得出即可;(1)先求出高AM和ON的长度,再求出和的面积,再求出答案即可.【详解】(1)当时,四边形ABQP是平行四边形,理由如下:∵四边形ABCD是平行四边形∴∴在和中,∴∴,∵∴即∴四边形ABQP是平行四边形故当时,四边形ABQP是平行四边形;(1)过A作于M,过O作于N∵∴在中,由勾股定理得:由三角形的面积公式得:,即∴∵∴∵∴∴在和中,∴∴∵∴的面积为当时,∴的面积为∴故y的值为.【点睛】本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.23、(1)补图见解析;(2)11.6,11,11;(3)210户.【解析】

(1)利用总户数乘相应的百分比,即可得出答案,再补全即可;(2)利用众数,中位数以及平均数的公式进行计算即可;(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.【详解】解:(1)由图知:被调查的总户数=10÷20%=50(户),则月平均用水量是11吨的用户数=50×40%=20(户)补全条形图如图所示:(2)这50个样本数据的平均数是11.6,众数是11,中位数是11,故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),则该县直属机关300户家庭的月平均用水量不超过12吨的约有=210(户).【点睛】本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.24、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论