




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省恩施州八年级数学第二学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列式子中,可以表示为的是()A. B. C. D.2.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32 B.16 C.8 D.43.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是()A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形C.DA=DED.CE=CA4.若点P(﹣3+a,a)在正比例函数y=﹣x的图象上,则a的值是()A. B.﹣ C.1 D.﹣15.一个圆锥形的圣诞帽高为10cm,母线长为15cm,则圣诞帽的表面积为()A.75cm2 B.150cm2 C.150cm2 D.75cm26.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.147.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的()A.方差 B.中位数 C.众数 D.平均数8.如图,在正方形中,是对角线上的一点,点在的延长线上,连接、、,延长交于点,若,,则下列结论:①;②;③;④,其中正确的结论序号是()A.①②③ B.①②④ C.②③④ D.①②③④9.如图,函数()和()的图象相交于点A,则不等式>的解集为()A.> B.< C.> D.<10.函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个12.如图,在矩形ABCD中,E,F,G,H分别为边AB,DA,CD,BC的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8二、填空题(每题4分,共24分)13.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.14.在比例尺1∶8000000的地图上,量得太原到北京的距离为6.4厘米,则太原到北京的实际距离为公里。15.如图,在宽为10m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为m1.16.方程的解为_________.17.若已知a、b为实数,且+2=b+4,则.18.分解因式:=_________________________.三、解答题(共78分)19.(8分)某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):10,12,15,10,16,18,19,18,20,38,22,25,20,18,18,20,15,16,21,16.(1)若将这些数据分为6组,请列出频数表,画出频数直方图;(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.20.(8分)某加工车间共有20名工人,现要加工1800个甲种零件,1000个乙种零件,已知每人每天加工甲种零件30个或乙种零件50个(每人只能加工一种零件),怎样分工才能确保同时完成两种零件的加工任务?21.(8分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为。(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。(3)若AB=3,AE=1,则线段AP的取值范围为。22.(10分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.23.(10分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.(1)求一次函数和正比例函数的解析式;(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.24.(10分)已知△ABC的三边长a、b、c满足|a-4|+(2b-12)2+=0,试判断△ABC的形状,并说明理由.25.(12分)已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.26.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵8元,用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种商品?
参考答案一、选择题(每题4分,共48分)1、A【解析】
直接利用同底数幂的乘法运算法则计算得出答案.【详解】A、a2÷a5=a-3,符合题意;B、a5÷a2=a3,不符合题意;C、a-1×a3=a2,不符合题意;D、(-a)(-a)(-a)=-a3,不符合题意;故选:A.【点睛】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2、C【解析】
根据等腰三角形的性质和中位线的性质求解即可.【详解】∵AD=AC∴是等腰三角形∵AE⊥CD∴∴E是CD的中点∵F是BC的中点∴EF是△BCD的中位线∴故答案为:C.【点睛】本题考查了三角形的线段长问题,掌握等腰三角形的性质和中位线的性质是解题的关键.3、D【解析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.【详解】解:∵CE∥AB,∴∠B=∠DCE,∠BAD=∠E,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴DA=DE,AB=CE,∵AD=DE,BD=CD,∴四边形ABEC为平行四边形,故选:D.【点睛】本题考查了平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解决本题的关键是证明△ABD≌△ECD.4、C【解析】
把点P坐标代入正比例函数解析式得到关于a的方程,解方程即可得.【详解】解:由题意得:a=﹣(-3+a),解得:a=1,故选C.【点睛】本题考查了正比例函数图象上点的坐标特征,熟知正比例函数图象上点的坐标一定满足正比例函数的解析式是解题的关键.5、A【解析】
利用圆锥的高,母线长,底面半径组成直角三角形可求得圆锥底面半径,圆锥的侧面积=底面周长×母线长÷1.【详解】解:高为10cm,母线长为15cm,由勾股定理得,底面半径==5cm,底面周长=10πcm,
侧面面积=×10π×15=75πcm1.
故选:A.【点睛】本题考查圆锥的计算,利用勾股定理,圆的周长公式和圆锥侧面积公式求解.6、B【解析】
由菱形的周长可求得AB的长,再利用三角形中位线定理可求得答案0【详解】∵四边形ABCD为菱形,∴AB28=7,且O为BD的中点.∵E为AD的中点,∴OE为△ABD的中位线,∴OEAB=3.1.故选B.【点睛】本题考查了菱形的性质,由条件确定出OE为△ABD的中位线是解题的关键.7、A【解析】
由于方差是用来衡量一组数据波动大小的量,故判断两队舞蹈队的身高较整齐通常需要比较两个队身高的方差.故选A考点:统计量的选择;方差8、A【解析】
①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=,则AM=AF=,,DN=MN=,∴AD=AB=,∴DE=BF=AB-AF=,∴,∵BC=AD=,故④错误;所以本题正确的有①②③;故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM是等边三角形是解题的关键.9、A【解析】试题解析:由图象可以看出当时,的图象在图象的上方,所以的解集为.故本题应选A.10、B【解析】
根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.11、C【解析】
直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.故选:.【点睛】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.12、B【解析】
连接AC,根据三角形中位线定理得到EH∥AC,EH=AC,得到△BEH∽△BAC,根据相似三角形的性质计算即可.【详解】解:连接AC,∵E、H分别为边AB、BC的中点,∴EH∥AC,EH=AC,∴△BEH∽△BAC,∴S△BEH=S△BAC=S矩形ABCD,同理可得,图中阴影部分的面积=×2×4=4,故选B.【点睛】本题考查的是三角形中位线定理、相似三角形的性质,掌握三角形中位线定理、相似三角形的面积比等于相似比的平方是解题的关键.二、填空题(每题4分,共24分)13、1或8【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=15∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=1,x=8,即移动的距离AA′等1或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.14、512【解析】设甲地到乙地的实际距离为x厘米,根据题意得:1/8000000=6.4/x,解得:x=51200000,∵51200000厘米=512公里,∴甲地到乙地的实际距离为512公里.15、2.【解析】试题分析:由图可得出两条路的宽度为:1m,长度分别为:10m,30m,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.由图可以看出两条路的宽度为:1m,长度分别为:10m,30m,所以,可以得出路的总面积为:10×1+30×1-1×1=49m1,又知该矩形的面积为:10×30=600m1,所以,耕地的面积为:600-49=2m1.故答案为2.考点:矩形的性质.16、【解析】
此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.【详解】∵∴∴∴∴故答案为:.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.17、1【解析】试题分析:因为+2=b+4有意义,所以,所以a=5,所以b+4=0,所以b=-4,所以a+b=5-4=1.考点:二次根式.18、.【解析】
试题分析:==.故答案为.考点:提公因式法与公式法的综合运用.三、解答题(共78分)19、(1)见解析;(2)校方安排学生吃午餐时间25min左右为宜,因为约有90%的学生在25min内可以就餐完毕【解析】
(1)找出20名学生在校午餐所需的时间的最大值与最小值,根据(最大值-最小值)÷6可得到组距.然后根据组距列出频数表,画出频数直方图.(2)由(1)分析即可得解.【详解】(1)组别(min)划记频数9.5~14.5314.5~19.5正正1019.5~24.5正524.5~29.5129.5~34.5034.5~39.51(2)校方安排学生吃午餐时间25min左右为宜,因为约有90%的学生在25min内可以就餐完毕.【点睛】本题考查的是频数分布表的制作以及组数的计算,要能根据频数直方图得到解题的必要的信息.20、安排15名工人加工甲种零件,5名工人加工乙种零件.【解析】
设安排人生产甲种零件,则(20-x)人生产乙种零件,根据“生产甲种零件的时间生产乙种零件的时间”列方程组求解可得.【详解】解:设安排x名工人加工甲种零件,则(20-x)人生产乙种零件,根据题意,得:.解这个方程,得经检验:是所列方程的解,且符合实际意义..答:安排15名工人加工甲种零件,5名工人加工乙种零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2【解析】
(1)根据直角三角形斜边中线定理可得,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP且BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得即(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点,利用P是DE中点,构造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可证△FAB≌△QDA得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形内角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得(3)由于即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2【详解】(1)根据直角三角形斜边中线定理有AP是△AED中线可得,即△APD为等腰三角形。∴∠DAP=∠EDA又AE=AF,∠BAF=∠DAE=90°,AB=AD∴△AED≌△ABF∴∠ABF=∠EDA=∠DAP且BF=ED设AP与BF相交于点O∴∠ABF+∠AFB=90°=∠DAP+∠AFB∴∠AOF=90°即AP⊥BF∴即故答案为:AP⊥BF,(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点∴∠EAP=∠PQD,∠AEP=∠QDP∵P是DE中点,∴EP=DP∴△AEP≌△PDQ则∠EAP=∠PQD,DQ=AE=FA∠QDA=180°-(∠PAD+∠PQD)=180°-∠EAD而∠FAB=180°-∠EAD,则∠QDA=∠FAB∵AF=DQ,∠QDA=∠FAB,AB=AD∴△FAB≌△QDA∴∠AFB=∠PQD=∠EAP,AQ=FB而∠EAP+∠FAG=90°∴∠AFB+∠FAG=90°∴∠FAG=90°∴AG⊥FB即AP⊥BF又∴(3)∵∴即求BF的取值范围BF最小时,即F在AB上,此时BF=2,AP=1BF最大时,即F在BA延长线上,此时BF=4,AP=2∴1≤AP≤2【点睛】掌握三角形全等以及直角三角形斜边上的中线,灵活运用各种角关系是解题的关键。22、见解析,【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.【详解】证明:由折叠得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.23、(1)y=﹣x+4,;(2)S=2x(0<x≤3).【解析】
(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;(2)根据三角形的面积公式即可得到结论.【详解】(1)把B(3,1)分别代入y=﹣x+b和y=k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中家长教育学习心得体会(3篇)
- 参考模板-中药化学总结模版
- 2025年城市轨道交通换乘枢纽建设社会稳定性风险评估与社区文化活动组织能力提升报告
- 信息处理考试典型考点试题及答案分析
- 2025年环保制冷剂生产项目产品性能测试与质量保证报告
- 信息技术与法律法规试题及答案
- 2025年软件改进技术试题及答案
- 城市河道整治项目2025年社会稳定风险评估与风险评估产业价值链提升报告
- 邻居钻桩协议书
- 高师带徒协议书
- 急诊突发事件处理流程图解
- 定价原理与价格策略的数字化应用
- 医院保安服务规范
- 2024(商务星球版)地理八年级上册总复习 课件
- 离散数学第6章
- 《沁园春·雪》PPT课件下载【优秀课件PPT】
- 儿童语言发育迟缓
- 机械伤害安全培训-2
- jgd280同步控制器使用说明
- 内部质量管理体系监督审核报告
- 2023年执业药师继续教育考核题库298题(含答案)
评论
0/150
提交评论