山东省滨州市部分学校2025届数学八下期末学业质量监测试题含解析_第1页
山东省滨州市部分学校2025届数学八下期末学业质量监测试题含解析_第2页
山东省滨州市部分学校2025届数学八下期末学业质量监测试题含解析_第3页
山东省滨州市部分学校2025届数学八下期末学业质量监测试题含解析_第4页
山东省滨州市部分学校2025届数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市部分学校2025届数学八下期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.为筹备班级的元旦联欢会,班长对全班同学爱吃哪几种零食作民意调查,从而最终决定买什么零食,下列调查数据中最值得关注的是()A.中位数 B.平均数 C.众数 D.标准差2.如图,数轴上所表示关于x的不等式组的解集是()A. B. C. D.3.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.94.如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB的延长线于点F,则在题中条件下,下列结论不能成立的是()A.BE=CE B.AB=BF C.DE=BE D.AB=DC5.下列运算,正确的是()A. B. C. D.6.如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A. B. C. D.7.已知a是方程x2-3x-1=0的一个根,则代数式A.6 B.5 C.12+213 D.8.如图,在平面直角坐标系中,菱形ABCD的顶点A、B的坐标分别为(3,0)、(-2,0),点D在y轴正半轴上,则点C的坐标为()A.(-3,4). B.(-4,3). C.(-5,3). D.(-5,4).9.解分式方程时,去分母变形正确的是()A. B.C. D.10.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是(

)A.3 B. C.5 D.二、填空题(每小题3分,共24分)11.如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E为AB中点,则EF+BF的最小值为.12.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC=

_________13.若关于的方程有增根,则的值是___________.14.比较大小:_____1.(填“>”、“=”或“<”)15.当________时,方程无解.16.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.17.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.18.如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.三、解答题(共66分)19.(10分)先化简,再求值:,其中,20.(6分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.(1)当E在线段BC上时①若DE=5,求BE的长;②若CE=EF,求证:AD=AE;(2)连结BF,在点E的运动过程中:①当△ABF是以AB为底的等腰三角形时,求BE的长;②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.21.(6分)计算:2×÷3﹣(﹣2.22.(8分)解方程:(1)x2-4x=3(2)x2-4=2(x+2)23.(8分)已知y-2和x成正比例,且当x=1时,当y=4。(1)求y与x之间的函数关系式;(2)若点P(3,m)在这个函数图象上,求m的值。24.(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=°,∠D=°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.25.(10分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立。(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)26.(10分)已知关于的方程(1)若请分别用以下方法解这个方程:①配方法;②公式法;(2)若方程有两个实数根,求的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据众数的定义即可求解.【详解】根据题意此次调查数据中最值得关注的是众数,故选C.【点睛】此题主要考查众数的特点,解题的关键是熟知众数的定义.2、A【解析】试题解析:由数轴可得:关于x的不等式组的解集是:x≥1.故选A.3、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.4、C【解析】

A选项:由中点的定义可得;B选项:先根据AAS证明△BEF≌△CED可得:DC=BF,再加上AB=DC即可得;C选项:DE和BE不是对应边,故是错误的;D选项:由平行四边形的性质可得.【详解】解:∵平行四边形ABCD中,E是BC边的中点,∴AB=DC,AB//DC,BE=CE,(故A、D选项正确)∴∠EBF=∠ECD,∠EFB=∠EDC,在△BEF和△CED中∴△BEF≌△CED(AAS)∴DC=BF,又∵AB=DC,∴AB=BF.(故B选项正确).所以A、B、D选项正确.故选C.【点睛】运用了平行四边形的性质,解题时,关键根据平行四边形的性质和中点的定义证明△BEF≌△CED,得到DC=BF,再根据等量代换得到AB=BF.5、D【解析】

分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.【详解】A选项:m•m2•m3=m6,故此选项错误;

B选项:m2+m2=2m2,故此选项错误;

C选项:(m4)2=m8,故此选项错误;

D选项:(-2m)2÷2m3=,此选项正确.

故选:D.【点睛】考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.6、D【解析】

由条件可判断出直线所经过的象限,再进行判断即可.【详解】解:∵在y=kx+2(k<0)中,令x=0可得y=2,

∴一次函数图象一定经过第一、二象限,

∵k<0,

∴y随x的增大而减小,

∴一次函数不经过第三象限,

∴其图象不可能经过Q点,

故选:D.【点睛】本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.7、B【解析】

根据方程的根的定义,把x=a代入方程求出a2-3a的值,然后整体代入代数式进行计算即可得解.【详解】解:∵a是方程x2-3x-1=0的一个根,∴a2-3a-1=0,整理得,a2-3a=1,∴2a2-6a+3=2(a2-3a)+3=2×1+3=5,故选:B.【点睛】本题考查了一元二次方程的解,利用整体思想求出a2-3a的值,然后整体代入是解题的关键.8、D【解析】

利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【详解】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,

∴AB=AD=5,

∴DO=AD2-AO2=52-32=4,

∴点C【点睛】本题考查菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.9、D【解析】

先对分式方程乘以,即可得到答案.【详解】去分母得:,故选:D.【点睛】本题考查去分母,解题的关键是掌握通分.10、C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=11,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=11,即3x+12y=11,x+4y=1,所以S2=x+4y=1,故答案为1.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=11求解是解决问题的关键.二、填空题(每小题3分,共24分)11、.【解析】试题分析:首先菱形的性质可知点B与点D关于AC对称,从而可知BF=DF,则EF+BF=EF+DF,当点D、F、E共线时,EF+BF有最小值.解:∵▱ABCD中,AB=AD,∴四边形ABCD为菱形.∴点D与点B关于AC对称.∴BF=DF.连接DE.∵E是AB的中点,∴AE=1.∴=又∵∠DAB=60°,∴cos∠DAE=.∴△ADE为直角三角形.∴DE===,故答案为:.【点评】本题主要考查的是最短路径、平行四边形的性质以及菱形的性质和判定,由轴对称图形的性质将EF+FB的最小值转化为DF+EF的最小值是解题的关键.12、1【解析】解:∵在矩形ABCD中,AO=AC,BO=BD,AC=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB为等边三角形,∴AC=2AB=1.13、1【解析】解:方程两边都乘(x﹣2),得:x﹣1=m.∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、>.【解析】【分析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.15、1【解析】

根据分式方程无解,得到1−x=0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.【详解】解:分式方程去分母得:m=2(1−x)+1,由分式方程无解,得到1−x=0,即x=1,代入整式方程得:m=1.故答案为:1.【点睛】此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.16、【解析】

根据直线于坐标轴交点的坐标特点得出,A,B两点的坐标,得出OB,OA的长,根据C是OB的中点,从而得出OC的长,根据菱形的性质得出DE=OC=2;DE∥OC;设出D点的坐标,进而得出E点的坐标,从而得出EF,OF的长,在Rt△OEF中利用勾股定理建立关于x的方程,求解得出x的值,然后根据三角形的面积公式得出答案.【详解】解:把x=0代入y=−x+4得出y=4,∴B(0,4);∴OB=4;

∵C是OB的中点,∴OC=2,∵四边形OEDC是菱形,∴DE=OC=2;DE∥OC,把y=0代入y=−x+4得出x=,∴A(,0);∴OA=,设D(x,),∴E(x,-x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;∴EF=1,∴S△AOE=·OA·EF=2.故答案为.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.17、41,3【解析】试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.18、【解析】

根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,依次得到∠AOB=∠BOB1=∠B1OB2=…=45∘,∴B1(0,),B2(−1,1),B3(−,0),…,发现是8次一循环,所以2019÷8=252…3,∴点B2019的坐标为(−,0)【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.三、解答题(共66分)19、【解析】

先利用二次根式的性质化简,合并后再把已知条件代入求值.【详解】原式=当,y=4时原式=【点睛】本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.20、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1【解析】【分析】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;(2)①分两种情况点E在线段BC上、点E在BC延长线上两种情况分别讨论即可得;②S1:S2=1,当BF//DE时,延长BF交AD于G,由已知可得到四边形BEDG是平行四边形,继而可得S△DEF=S平行四边形BEDG,S△BEF+S△DFG=S平行四边形BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.【详解】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,∵DE=5,∴CE==3,∴BE=BC-CE=5-3=2;②在矩形ABCD中,∠DCE=90°,AD//BC,∴∠ADE=∠DEC,∠DCE=∠DFE,∵CE=EF,DE=DE,∴△CED≌△DEF(HL),∴∠CED=∠FED,∴∠ADE=∠AED,∴AD=AE;(2)①当点E在线段BC上时,AF=BF,如图所示:∴∠ABF=∠BAF,∵∠ABF+∠EBF=90°,∠BAF+∠BEF=90°,∴∠EBF=∠BEF,∴EF=BF,∴AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5-3=2;当点E在BC延长线上时,AF=BF,如图所示,同理可证AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5+3=8,综上所述,可知BE=2或8;②S1:S2=1,解答参考如下:当BF//DE时,延长BF交AD于G,在矩形ABCD中,AD//BC,AD=BC,AB=CD,∠BAG=∠DCE=90°,∵BF//DE,∴四边形BEDG是平行四边形,∴BE=DG,S△DEF=S平行四边形BEDG,∴AG=CE,S△BEF+S△DFG=S平行四边形BEDG,∴△ABG≌△CDE,∴S△ABG=S△CDE,∵S△ABE=S平行四边形BEDG,∴S△ABE=S△BEF+S△DFG,∴S△ABF=S△DFG,∴S△ABF+S△AFG=S△DFG+S△AFG即S△ABG=S△ADF,∴S△CDE=S△ADF,即S1:S2=1.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.21、【解析】

利用二次根式的乘除法则和完全平方公式计算.【详解】原式=2×××-(2-2+3)-2=-1+2-2=-1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1)x1=,x2=(2)x1=-2,x2=4【解析】

(1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;(2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.【详解】(1)解:配方得,x2-4x+4=3+4(x-2)2=7解之:x-2=±∴x1=,x2=;(2)解:(x+2)(x-2)-2(x+2)=0(x+2)(x-2-2)=0∴x+2=0或x-4=0解之:x1=-2,x2=4.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.23、(1)y=2x+2;(2)m=8【解析】

(1)设y-2=kx,把已知条件代入可求得k,则可求得其函数关系式,可知其函数类型;(2)把点的坐标代入可得到关于m的方程,可求得m的值.【详解】(1)设y-2=kx,把x=1,y=4代入求得k=2,∴函数解析式是y=2x+2;(2)∵点P(3,m)在这个函数图象上,∴m=2×3+2=8.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.24、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.【解析】试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;

(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;

(3)根据等对角四边形的定义画出图形即可求解;

(4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;

②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.试题解析:(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,∴∠D=∠B=1°,∴∠C=360°﹣1°﹣1°﹣70°=140°;(2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)如图所示:(4)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2,∴BM=AB﹣AM=5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论