汕头市重点中学2025届八年级数学第二学期期末质量检测试题含解析_第1页
汕头市重点中学2025届八年级数学第二学期期末质量检测试题含解析_第2页
汕头市重点中学2025届八年级数学第二学期期末质量检测试题含解析_第3页
汕头市重点中学2025届八年级数学第二学期期末质量检测试题含解析_第4页
汕头市重点中学2025届八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

汕头市重点中学2025届八年级数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是A. B. C. D.2.如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为()A.2 B.3 C. D.3.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定4.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠25.某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:使用寿命x/h60≤x<100100≤x<140140≤x<180灯泡只数303040这批灯泡的平均使用寿命是()A.112h B.124h C.136h D.148h6.下列等式中,计算正确的是()A. B.C. D.7.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.-1 B.-+1 C. D.-8.在函数的图象上的点是()A.(-2,12) B.(2,-12) C.(-4,-6) D.(4,-6)9.下列调查的样本所选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况10.若a<b,则下列结论不一定成立的是()A. B. C. D.11.关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③ B.②③ C.①④ D.②④12.已知,下列不等式中正确是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,已知,,平分,交边于点E,则

___________

.14.在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.15.已知直线经过点(-2,2),并且与直线平行,那么________.16.若不等式(m-2)x>1的解集是x<,则m的取值范围是______.17.数据2,4,3,x,7,8,10的众数为3,则中位数是_____.18.函数y=x–1的自变量x的取值范围是.三、解答题(共78分)19.(8分)我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,设A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.(1)请填写下表(2)求出yA、yB与x之间的函数解析式;(3)试讨论A、B两村中,哪个村的运费最少;(4)考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.20.(8分)如图,已知直线:与x轴,y轴的交点分别为A,B,直线:与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.(1)求实数b的值;(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.21.(8分)已知与成正比例,(1)y是关于x的一次函数吗?请说明理由;(2)如果当时,,求关于的表达式.22.(10分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图,回答下列问题(1)机动车行驶________小时后加油,中途加油_______升;(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并直接写出自变量t的取值范围;(3)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由。23.(10分)如图,一次函数y=x+4的图像与反比例函数(k为常数且k≠0)的图像交于A(-1,a),B(b,1)两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且,求点P的坐标.24.(10分)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)25.(12分)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.26.如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】

结合图形,根据平移的概念进行求解即可得.【详解】解:根据平移的定义可得图案可以通过A平移得到,故选A.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.2、B【解析】

由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。【详解】解:∵菱形ABCD的周长为24∴AD=BD=24÷4=6,OB=OD由∵∠DAB=60°∴△DAB为等边三角形又∵DH⊥AB∴AH=HB∴OH=AD=3故答案为B.【点睛】本题考查了菱形的性质、等边三角形、三角形中位线的知识,考查知识点较多,提升了试题难度,但抓住双基,本题便不难。3、B【解析】

根据三角形中位线定理计算即可【详解】∵M、N分别是AC、BC中点,∴NM是△ACB的中位线,∴AB=2MN=80m,故选:B.【点睛】此题考查三角形中位线定理,解题关键在于掌握运算法则4、C【解析】试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.5、B【解析】

根据图表可知组中值,它们的顺序是80,120,160,然后再根据平均数的定义求出即可,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:这批灯泡的平均使用寿命是=124(h),故选B.【点睛】平均数在实际生活中的应用是本题的考点,解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.6、A【解析】

根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、a10÷a9=a,正确;B、x3•x2=x5,故错误;C、x3-x2不是同类项不能合并,故错误;D、(-3xy)2=9x2y2,故错误;故选A.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.7、A【解析】

先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】数轴上正方形的对角线长为:,由图中可知-1和A之间的距离为.∴点A表示的数是-1.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.8、C【解析】

根据横坐标与纵坐标的乘积为24即可判断.【详解】解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,∴(-4,-6)在的图象上,故选:C.【点睛】本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【解析】试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;C.只向八年级的同学进行调查不具有代表性,故本选项不符合题意;D.反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.故选B.10、D【解析】

由不等式的性质进行计算并作出正确的判断.【详解】A.在不等式a<b的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项错误;B.在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C.在不等式a<b的两边同时乘以,不等号的方向改变,即,故本选项错误;D.当a=−5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点睛】本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.11、C【解析】垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12、B【解析】

根据不等式的性质即可得出答案.【详解】A:若,则,故A错误;B:若,则,故B正确;C:若,则,故C错误;D:若,则,故D错误;故答案选择B.【点睛】本题考查的是不等式的性质,比较简单,需要熟练掌握不等式的相关性质.二、填空题(每题4分,共24分)13、1【解析】

由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【详解】解:中,AD//BC,平分故答案为1.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.14、或2【解析】

四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠BED=120°算出即可【详解】画出示意图,分别讨论A,E在同侧和异侧的情况,∵四边形ABCD为菱形,∠A=60,BD=3,∴△ABD为边长为3等边三角形,则AO=,∵∠BED=120°,则∠OBE=30°,可得OE=,则AE=,同理可得OE’=,则AE’=,所以AE的长度为或【点睛】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.15、1.【解析】根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.解:∵直线y=kx+b与直线y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=1.故答案为1.16、m<1【解析】

根据不等式的性质和解集得出m-1<0,求出即可.【详解】∵不等式(m-1)x>1的解集是x<,

∴m-1<0,

即m<1.

故答案是:m<1.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.17、1【解析】

先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:∵这组数据2,1,3,x,7,8,10的众数为3,∴x=3,从小到大排列此数据为:2,3,3,1,7,7,10,处于中间位置的数是1,∴这组数据的中位数是1;故答案为:1.【点睛】本题主要考查数据统计中的众数和中位数的计算,关键在于根据题意求出未知数.18、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.考点:二次根式有意义三、解答题(共78分)19、(1)200-x,240-x,x+60;(2)yA=-5x+5000,yB=3x+4680;(3)40<x≤200时,yA<yB,A村运费较少,x=40时,yA=yB,,两村运费一样,x<40时,B村运费较少(4)由A村运往C库50吨,运D库150吨,而B村运往C库190吨,运D库110吨则两村运费之和最小,为9580元【解析】

(1)结合题意用含x的代数式表示填写即可;(2)利用运送的吨数×每吨运输费用=总费用,列出函数解析式即可解答;(3)由(1)中的函数解析式联立方程与不等式解答即可;(4)首先由B村的荔枝运费不得超过4830元得出不等式,再由两个函数和,根据自变量的取值范围,求得最值.【详解】解:(1)A,B两村运输荔枝情况如表,收收地地运运地地

C

D

总计

A

x吨

200-x

200吨

B

240-x

x+60

300吨

总计

240吨

260吨

500吨

(2)yA=20x+25(200-x)=5000-5x,yB=15(240-x)+18(x+60)=3x+4680;(3)①当yA=yB,即5000-5x=3x+4680,解得x=40,当x=40,两村的运费一样多,②当yA>yB,即5000-5x>3x+4680,解得x<40,当0<x<40时,A村运费较高,③当yA<yB,即5000-5x<3x+4680,解得x>40,当40<x≤200时,B村运费较高;(4)B村的荔枝运费不得超过4830元,yB=3x+4680≤4830,解得x≤50,两村运费之和为yA+yB=5000-5x+3x+4680=9680-2x,要使两村运费之和最小,所以x的值取最大时,运费之和最小,故当x=50时,最小费用是9680-2×50=9580(元).20、(2)2;(2)a=5或-2.【解析】

(2)利用一次函数图象上点的坐标特征,由点E在直线上可得到点E的坐标,由点E在直线上,进而得出实数b的值;

(2)依据题意可得MN=|2+a−(2−a)|=|a−2|,BO=2.当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,即可得到|a-2|=2,进而得出a的值.【详解】解:(2)∵点E在直线l2上,且点E的横坐标为2,

∴点E的坐标为(2,2),

∵点E在直线l上,

∴2=−×2+b,

解得:b=2;

(2)如图,当x=a时,yM=2−a,yN=2+a,

∴MN=|2+a−(2−a)|=|a−2|,

当x=0时,yB=2,

∴BO=2.

∵BO∥MN,

∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,

此时|a-2|=2,

解得:a=5或a=-2.

∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或-2.故答案为:(2)2;(2)a=5或-2.【点睛】本题考查一次函数图象上点的坐标特征、平行四边形的性质以及解一元一次方程,熟练掌握平行四边形的性质是解题的关键.21、(1)y是x的一次函数,理由见解析;(2)【解析】试题分析:(1)根据题意设y-1=k(2x+3),整理得y=2kx+3k+1,然后根据一次函数的定义判断y是否是关于x的一次函数;(2)把x=-,y=0代入求出k即可得到y与x的函数关系.试题解析:(1)依题意设,所以,故y是x的一次函数;(2)把x=−,y=0代入得−k+3k+1=0,解得k=3,∴y关于x的函数表达式为y=6x+10.22、(1)5,24;(2)Q=42-6t(0≤t≤5);(3)够用,见解析.【解析】

(1)观察函数图象,即可得出结论;再根据函数图象中t=5时,Q值的变化,即可求出中途加油量;(2)根据每小时耗油量=总耗油量÷行驶时间,即可求出机动车每小时的耗油量,再根据加油前油箱剩余油量=42-每小时耗油量×行驶时间,即可得出结论;(3)根据可行驶时间=油箱剩余油量÷每小时耗油量,即可求出续航时间,由路程=速度×时间,即可求出续航路程,将其与230比较后即可得出结论.【详解】解:(1)观察函数图象可知:机动车行驶5小时后加油;36-12=24(升),中途加油24升;(2)机动车每小时的耗油量为(42-12)÷5=6(升),∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42-6t(0≤t≤5);(3))∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米),∵240>230,∴油箱中的油够用.【点睛】本题考查了一次函数的应用,解题的关键是:(1)观察函数图象找出结论;根据数量关系,列式计算;(2)根据数量关系,列出函数关系式;(3)利用路程=速度×时间,求出可续航路程.23、(1);(2)点P(-6,0)或(-2,0).【解析】

(1)把A点坐标代入直线解析式求出a的值,再把A(-1,3)代入反比例函数关系式中,求出k的值即可;(2)分别求出B、C的坐标,设点P的坐标为(x,0),根据列出方程求解即可.【详解】(1)把点A(-1,a)代入y=x+4,得a=3,∴A(-1,3),∴k=-3,∴反比例函数的表达式为y=-;(2)把B(b,1)代入反比例函数y=-,解得:b=-3,∴B(-3,1),当y=x+4=0时,得x=-4,∴点C(-4,0),设点P的坐标为(x,0),∵S△AOB=S△AOC-S△BOC=×4×3-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论