




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
扬州市江都区实验2025年八年级数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=()A.60° B.45° C.30° D.15°2.一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5 B.6 C.7 D.83.点A,B,C,D在数轴上的位置如图所示,则实数对应的点可能是A.点A B.点B C.点C D.点D4.如图,以正方形ABCD的边AB为一边向外作等边三角形ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°5.下列根式中与是同类二次根式的是().A. B. C. D.6.若a>b,则下列各式不成立的是()A.a﹣1>b﹣2 B.5a>5b C.﹣a>﹣b D.a﹣b>07.下列四边形中,不属于轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形8.如图,中,垂足为点,若,则的度数是()A. B. C. D.9.下列命题是真命题的是()A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D.平行四边形的对角线相等10.下列函数解析式中不是一次函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.12.某正比例函数图象经过点(1,2),则该函数图象的解析式为___________13.命题“如果x=y,那么”的逆命题是____________________________________________.14.若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为_____15.若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).16.已知一次函数的图象经过两点,,则这个函数的表达式为__________.17.若分式的值是0,则x的值为________.18.实数a、b在数轴上的位置如图所示,化简=_____.三、解答题(共66分)19.(10分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.20.(6分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.21.(6分)为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)(下列数据提供参考:20°=0.3420,20°=0.9397,20°=0.3640)22.(8分)如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点P,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.23.(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.(1)求点停止运动时,的长;(2)两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.(3)两点在运动过程中,求使与相似的时间的值.24.(8分)如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.25.(10分)随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:2019年中考体育成绩(分数段)统计表分数段频数(人)频率25≤x<30120.0530≤x<3524b35≤x<40600.2540≤x<45a0.4545≤x<50360.15根据上面提供的信息,回答下列问题:(1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?26.(10分)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
连接BD交MN于P′,如图,利用两点之间线段最短可得到此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,然后根据正方形的性质求出∠P′CD的度数即可.【详解】连接BD交MN于P′,如图:∵MN是正方形ABCD的一条对称轴∴P′B=P′C∴P′C+P′D=P′B+P′D=BD∴此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小∵点P′为正方形的对角线的交点∴∠P′CD=45°.故选B.【点睛】本题涉及了轴对称-最短路线问题及正方形的性质等知识点,关键是熟练掌握把两条线段的位置关系转换,再利用两点之间线段最短或者垂线段最短来求解.2、D【解析】
先求出多边形的每一个外角的度数,继而根据多边形的外角和为360度进行求解即可.【详解】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.【点睛】本题考查了多边形的外角和内角,熟练掌握多边形的外角和为360度是解本题的关键.3、B【解析】
根据被开方数越大算术平方根越大,可得的大小,根据数的大小,可得答案.【详解】,,实数对应的点可能是B点,故选B.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出是解题关键.4、B【解析】
根据等边三角形和正方形的性质,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【详解】解:∵等边△ABE,∴∠EAB=60°,AB=AE∴∠EAD=150°,∵正方形ABCD,∴AD=AB∴AE=AD,∴∠AED=∠ADE=15°,∴∠BED=60°-15°=45°,故选:B.【点睛】此题主要考查了等边三角形的性质.即每个角为60度.5、C【解析】
化简各选项后根据同类二次根式的定义判断.【详解】A.与被开方数不同,故不是同类二次根式;B.=3与被开方数不同,故不是同类二次根式;C.=2与被开方数相同,故是同类二次根式;D.=3与被开方数不同,故不是同类二次根式。故选C.【点睛】此题考查同类二次根式,解题关键在于先化简.6、C【解析】
根据不等式的性质,可得答案.【详解】解:A、a−1>a−2>b−2,故A成立,故A不符合题意;B、5a>5b,故B成立,故B不符合题意;C、两边都乘,不等号的方向改变,﹣a﹣b,故C不成立,故C符合题意,D、两边都减b,a﹣b>0,故D成立,故D不符合题意;故选C.【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.7、A【解析】
根据轴对称图形的定义:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,即可判定平行四边形不是轴对称图形,矩形、菱形、正方形都是.【详解】根据轴对称图形的定义,可得A选项,平行四边形不符合轴对称图形定义;B选项,矩形符合定义,是轴对称图形;C选项,菱形符合定义,是轴对称图形;D选项,正方形符合定义,是轴对称图形;故答案为A.【点睛】此题主要考查轴对称图形的理解,熟练掌握,即可解题.8、A【解析】
根据平行四边形性质得出∠B=∠D,根据三角形内角和定理求出∠B即可.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,∴∠AEB=90°.又∠BAE=23°,∴∠B=90°-23°=67°.即∠D=67°.故选:A.【点睛】本题考查了平行四边形的性质,关键是求出∠B的度数.9、C【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、将点A(-2,3)向上平移3个单位后得到的点的坐标为(-2,6),是假命题;B、三角形的三条角平分线的交点到三角形的三条边的距离相等,是假命题;C、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,是真命题;D、平行四边形的对角线互相平分,是假命题;故选:C.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.10、C【解析】
根据一次函数的定义,可得答案.【详解】A、是一次函数,故A正确;B、是一次函数,故B正确;C、是二次函数,故C错误;D、是一次函数,故D正确;故选:C.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.二、填空题(每小题3分,共24分)11、答案为:y=﹣2x+3.【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.【详解】设直线l的函数解析式为y=kx+b,因为,直线l与直线y=﹣2x+1平行,所以,y=﹣2x+b,因为,与直线y=﹣x+2的交点纵坐标为1,所以,1=﹣x+2,x=1所以,把(1,1)代入y=-2x+b,解得b=3.所以,直线l的函数解析式为:y=﹣2x+3.故答案为:y=﹣2x+3.【点睛】本题考核知识点:一次函数解析式.解题关键点:熟记一次函数的性质.12、【解析】
设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.【详解】解:设正比例函数的解析式为y=kx,把点(1,2)代入得,2=k×1,解得k=2,∴该函数图象的解析式为:;故答案为:.【点睛】本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.13、逆命题“如果,那么x=y”.【解析】命题“如果x=y,那么x2=y2”的题设是“x=y”,结论是“x2=y2”,则逆命题的题设和结论分别为“x2=y2”和“x=y”,即逆命题为“如果x2=y2,那么x=y”.故答案为如果x2=y2,那么x=y.点睛:本题考查逆命题的概念:如果两个命题的题设和结论正好相反,那么这两个命题互为逆命题,如果把其中一个叫原命题,那么另一个叫它的逆命题.14、x≥-3且x≠1【解析】
根据二次根式有意义的条件可得x+3≥0,根据零次幂底数不为零可得x-1≠0,求解即可.【详解】解:由题意得:x+3≥0,且x-1≠0,
解得:x≥-3且x≠1.
故答案为x≥-3且x≠1.【点睛】此题主要考查了二次根式和零次幂,关键是掌握二次根式中的被开方数是非负数;a0=1(a≠0).15、=【解析】
首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.【详解】把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,∵(2ax0+b)2=4a2x02+4abx0+b2,∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,∴M=△.故答案为=.【点睛】本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.16、【解析】
设一次函数的解析式是:y=kx+b,然后把点,代入得到一个关于k和b的方程组,从而求得k、b的值,进而求得函数解析式.【详解】解:设一次函数的解析式是:y=kx+b,根据题意得:,解得:,则一次函数的解析式是:.故答案是:.【点睛】本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.17、3【解析】
根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.18、-b【解析】
根据数轴判断出、的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.【详解】由图可知,,,所以,,.故答案为-b【点睛】本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出、的正负情况是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】
(1)由四边形ABCD是平行四边形,可得AD∥BC,又BE∥DF,可证四边形BFDE是平行四边形;(2)由四边形ABCD是平行四边形,可得AD=BC,又ED=BF,从而AD-ED=BC-BF,即AE=CF.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,即DE∥BF.∵BE∥DF,∴四边形BFDE是平行四边形;(2)∵四边形ABCD是平行四边形,∴AD=BC,∵四边形BFDE是平行四边形,∴ED=BF,∴AD-ED=BC-BF,即AE=CF.【点睛】本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.20、(1)证明见解析;(2)证明见解析.【解析】
1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可.【详解】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.21、限高应标3.0.【解析】
由图得:ÐA=ÐDCE=20º∵AB=10,在Rt△ABD中,=,∴BD=10×0.3640=3.64∴DC=BD-BC=3.64-0.5=3.14∵在Rt△DEC中,=,∴CE=3.14×0.9397≈3.0答:限高应标3.0.【点睛】这是一题用利用三角函数解决的实际问题,关键在于构造直角三角形Rt△ABD和Rt△DEC.22、(1)见解析;(2)(3,4);(3)(,)或(,)或(,).【解析】
(1)由矩形的性质得出OA∥BC,∠AOB=∠OBC,由折叠的性质得∠AOB=∠DOB,得出∠OBC=∠DOB,证出OE=BE即可;
(2)设OE=BE=x,则CE=8-x,在Rt△OCE中,由勾股定理得出方程,解方程即可;
(3)先求出点D的坐标,然后根据B、D、E三点的坐标利用中点坐标公式分三种情况,即可求出P点的坐标.[点(a,b)与(c,d)所连线段的中点坐标是(,)]【详解】解:(1)证明:∵四边形OABC是矩形,
∴OA∥BC,
∴∠AOB=∠OBC,
由折叠的性质得:∠AOB=∠DOB,
∴∠OBC=∠DOB,
∴OE=BE,
∴△OBE是等腰三角形;
(2)设OE=BE=x,则CE=BC-BE=OA-BE=8-x,
在Rt△OCE中,由勾股定理得:42+(8-x)2=x2,
解得:x=5,
∴CE=8-x=3,
∵OC=4,
∴E点的坐标为(3,4);
(3)坐标平面内存在一点P,使得以B,D,E,P为顶点的四边形是平行四边形.理由如下:作DH⊥BE于H在Rt△BDE中,BE=5,BD=4,DE=3∴∴DH=∴EH=∴CH=∴点D的坐标是(,)∴当BE为平行四边形的对角线时,点P的坐标为(3+8-,4+4-),即(,);
当BD为平行四边形的对角线时,点P的坐标为(8+-3,4+-4),即(,);
当DE为平行四边形的对角线时,点P的坐标为(3+-8,4+-4),即(,);
综上所述,坐标平面内存在一点P,使得以B,D,E,P为顶点的四边形是平行四边形,P点坐标为(,)或(,)或(,).【点睛】本题是四边形综合题目,考查了矩形的性质、翻折变换的性质、坐标与图形性质、勾股定理、平行四边形的性质、中点坐标公式等知识,本题综合性强,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.23、(1)(2)(3)或【解析】
(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,点Q运动到点A时,t==5,∴AP=5,PC=1,在Rt△PBC中,PB=.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴,解得t=.∴t=s时,四边形PQCE是菱形.(3)如图2中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴,∴,∴.如图3中,当∠AQP=90°时,∵△AQP∽△ACB,∴,∴,∴,综上所述,或s时,△APQ是直角三角形.【点睛】本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.24、(1)详见解析;(2)8【解析】
(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【详解】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD=,∴△ABC的面积=BC•AD=×8×2=8.【点睛】此题考查平行四边形的判定与性质,等腰三角形的性质,矩形的判定与性质,解题关键在于求出∠ADB=90°.25、(1)a=108,b=0.1;补全频数分布直方图见解析;(2)40≤x<45;(3)优秀的约有7200名.【解析】
(1)根据在25≤x<30分数段内的频数和频率可以求得本次调查学生数,从而可以求得a、b的值,进而可以将频数分布直方图补充完整;
(2)根据频数分布表中的数据可以得到这组数据的中位数所在的分数段,从而可以解答本题;
(3)根据频数分布表中的数据可以计算出该市12000名九年级考生中考体育成绩为优秀的约有多少名.【详解】(1)本次抽取的学生有:12÷0.05=240(人),
a=240×0.45=108,b=24÷240=0.1,
补全频数分布直方图(2)由频数分布表可知,
中位数在40≤x<45这个分数段内,
∴甲同学的体育成绩在40≤x<45分数段内,
故答案为:40≤x<45;
(3)12000×(0.45+0.15)=7200(名),
答:该市12000名九年级考生中考体育成绩为优秀的约有7200名.【点睛】考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年软考设计师学习方法解析试题及答案
- 技术员计算机考试全真试题及答案
- 高考数学知识技能对比研究试题及答案
- 企业战略实施的关键技能试题及答案
- 软件技术员考试成败关键解读试题及答案
- 行政法学多元化视野试题及答案
- 企业财务战略与其风险管理架构试题及答案
- 多元化经营的实施方案计划
- VB考试必背知识点的试题及答案
- 湖南省2025年第一次集中招聘考试笔试历年典型考题及考点剖析附带答案详解
- GB/T 11032-2020交流无间隙金属氧化物避雷器
- 初三中考古诗文理解性默写题
- 三年级数学《认识分数》
- 深度解剖华为虚拟股权激励方案最全版含持股比例
- 医学康复治疗技术作业治疗课件
- 儿科品管圈成果汇报提高手腕带佩戴率课件
- 住院患者健康教育计划执行单
- 中考历史 (世界现代史)
- 容重器测量结果的不确定度评定
- 用户满意度调查表(产品与服务类)
- 小学英语自然拼读课件
评论
0/150
提交评论