江苏省南京市秦淮区一中学2025届八年级数学第二学期期末复习检测试题含解析_第1页
江苏省南京市秦淮区一中学2025届八年级数学第二学期期末复习检测试题含解析_第2页
江苏省南京市秦淮区一中学2025届八年级数学第二学期期末复习检测试题含解析_第3页
江苏省南京市秦淮区一中学2025届八年级数学第二学期期末复习检测试题含解析_第4页
江苏省南京市秦淮区一中学2025届八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市秦淮区一中学2025届八年级数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知一次函数b是常数且,x与y的部分对应值如下表:x0123y6420那么方程的解是A. B. C. D.2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为抢占市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3B.5C.2D.2.53.菱形对角线的平方和等于这个菱形一边长平方的()A.1倍 B.2倍 C.4倍 D.8倍4.自2011年以来长春市己连续三届被评为“全国文明城市”,为了美化城市环境,今年长春市计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树万棵,可列方程是()A. B.C. D.5.将直线向下平移2个单位,得到直线()A. B. C. D.6.一次函数的图象与轴、轴分别交于点,,点,分别是,的中点,是上一动点.则周长的最小值为()A.4 B. C. D.7.到三角形三个顶点距离相等的点是()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高的交点D.三角形三条边的中线的交点8.若,则下列不等式成立的是()A. B. C. D.9.二次函数y=ax2+bx+c(a≠1)的图象如图所示,对称轴是直线x=1,下列结论:①ab<1;②b2>4ac;③a+b+c<1;④3a+c<1.其中正确的是()A.①④ B.②④ C.①②③ D.①②③④10.要使式子有意义,则实数的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠=_________度.12.在某校举行的“汉字听写”大赛中,六名学生听写汉字正确的个数分别为:35,31,32,31,35,31,则这组数据的众数是_____.13.一组数据:,计算其方差的结果为__________.14.当x_________时,分式有意义.15.若点与点关于原点对称,则_______________.16.计算:________.17.在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是▲.(只要填写一种情况)18.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.三、解答题(共66分)19.(10分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.图1①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,矩形ABCD的长宽为方程x2-14x+40=0的两根,其中(BC>AB),点E从A点出发,以1个单位每秒的速度向终点D运动;同时点F从C点出发,以2个单位每秒的速度向终点B运动,当点E、F运动过程中使四边形ABFE是等腰直角四边形时,求EF图220.(6分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.21.(6分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:(1)参加这次跳绳测试的共有人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是;(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.22.(8分)已知结论:在直角三角形中,30°所对的直角边是斜边的一半,请利用这个结论进行下列探究活动.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=,D为AB中点,P为AC上一点,连接PD,把△APD沿PD翻折得到△EPD,连接CE.(1)AB=_____,AC=______.(2)若P为AC上一动点,且P点从A点出发,沿AC以每秒一单位长度的速度向C运动,设P点运动时间为t秒.①当t=_____秒时,以A、P、E、D、为顶点可以构成平行四边形.②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.23.(8分)如图,在中,,是延长线上一点,点是的中点。(1)实践与操作:①作的平分线;②连接并延长交于点,连接(尺规作图,保留作图痕迹,不写作法,在图中标明相应字母);(2)猜想与证明:猜想四边形的形状,并说明理由。24.(8分)如图,在梯形ABCD中,AD∥BC,AB=4,∠C=30°,点E、F分别是边AB、CD的中点,作DP∥AB交EF于点G,∠PDC=90°,求线段GF的长度.25.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3),B(﹣3,1),C(﹣1,3).(1)请按下列要求画图:①平移△ABC,使点A的对应点A1的坐标为(﹣4,﹣3),请画出平移后的△A1B1C1;②△A1B1C1与△ABC关于原点O中心对称,画出△A1B1C1.(1)若将△A1B1C1绕点M旋转可得到△A1B1C1,请直接写出旋转中心M点的坐标.26.(10分)已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;⑴分别求出m与n的取值范围;⑵请化简:。

参考答案一、选择题(每小题3分,共30分)1、C【解析】

因为一次函数b是常数且,x与y的部分对应值如表所示,求方程的解即为y=0时,对应x的取值,根据表格找出y=0时,对应x的取值即可求解.【详解】根据题意可得:的解是一次函数中函数值y=0时,自变量x的取值,所以y=0时,x=1,所以方程的解是x=1,故选C.【点睛】本题主要考查一元一次方程与一次函数的关系,解决本题的关键是要熟练掌握一次函数与一元一次方程的关系.2、A【解析】

此题是一元二次方程的实际问题.设售价为x元,则每件的利润为(x-40)元,由每降价1元,可多卖20件得:降价(60-x)元可增加销量20(60-x)件,即降价后的销售量为[300+20(60-x)]件;根据销售利润=销售量×每件的利润,可列方程求解.需要注意的是在实际问题中,要注意分析方程的根是否符合实际问题,对于不合题意的根要舍去.【详解】设售价为x元时,每星期盈利为6120元,由题意得(x﹣40)[300+20(60﹣x)]=6120,解得:x1=57,x2=58,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=58,所以,必须降价:60-57=3(元).故选:A【点睛】本题考核知识点:一元二次方程的实际问题.解题关键点:理解题意,根据数量关系列出方程.3、C【解析】

设两对角线长分别为L1,L1,边长为a,根据菱形的性质可得到对角线的一半与菱形的边长构成一个直角三角形,从而不难求得其对角线的平方和与一边平方的关系.【详解】解:设两对角线长分别为L1,L1,边长为a,则(L1)1+(L1)1=a1,∴L11+L11=4a1.故选C.【点睛】此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.4、A【解析】

根据题意给出的等量关系即可列出方程.【详解】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴,故选:A.【点睛】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.5、A【解析】

根据一次函数图象的平移规律即可得.【详解】由一次函数图象的平移规律得:向下平移得到的直线为即故选:A.【点睛】本题考查了一次函数图象的平移规律,掌握图象的平移规律是解题关键.6、D【解析】

作C点关于y轴的对称点,连接,与y轴的交点即为所求点P,用勾股定理可求得长度,可得PC+PD的最小值为,再根据CD=2,可得PC+PD+CD=【详解】解:如图,作C点关于y轴的对称点,连接交y轴与点P,此时PC+PD的值最小且∵,分别是,的中点,,∴C(1,0),D(1,2)在Rt△中,由勾股定理可得又∵D(1,2)∴CD=2∴此时周长为PC+PD+CD=故选D【点睛】本题考查最短路径问题,把图形作出来是解题关键,再结合勾股定理解题.7、A【解析】

根据线段垂直平分线上的点到两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到线段两个端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.【点睛】本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.8、B【解析】

总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.【详解】A:a>b,则a-5>b-5,故A错误;B:a>b,-a<-b,则-2a<-2b,B选项正确.C:a>b,a+3>b+3,则>,则C选项错误.D:若0>a>b时,a2<b2,则D选项错误.故选B【点睛】本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.9、C【解析】

解:∵抛物线开口向上,∴∵抛物线的对称轴为直线∴∴所以①正确;∵抛物线与x轴有2个交点,∴所以②正确;∵x=1时,∴所以③正确;∵抛物线的对称轴为直线∴而时,即∴即所以④错误.故选C.10、C【解析】

根据二次根式的性质,被开方数大于等于0,就可以求解.【详解】根据题意得:x−2⩾0,解得x⩾2.故选:C【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其性质二、填空题(每小题3分,共24分)11、10【解析】

根据旋转的性质找到对应点、对应角进行解答.【详解】∵△ABC绕点A逆时针旋转50°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC-∠BAB′=1°.故答案是:1.【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.12、1【解析】

利用众数的定义求解.【详解】解:这组数据的众数为1.

故答案为1.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.13、【解析】

方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.【详解】解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.

故答案为:1.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、≠3【解析】

解:根据题意得x-3≠0,即x≠3故答案为:≠315、【解析】

直接利用关于原点对称点的性质得出a,b的值.【详解】解:∵点A(a,1)与点B(−3,b)关于原点对称,∴a=3,b=−1,∴ab=3-1=.故答案为:.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.16、【解析】

原式化简后,合并即可得到结果.【详解】解:原式=,故答案为:.【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.17、AD=BC(答案不唯一).【解析】根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形:∵AB=CD,∴当AD=BC时,根据两组对边分别相等的四边形是平行四边形.当AB∥CD时,根据一组对边平行且相等的四边形是平行四边形.当∠B+∠C=180°或∠A+∠D=180°时,四边形ABCD是平行四边形.故此时是中心对称图形.故答案为AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等(答案不唯一).18、【解析】试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.故答案为.点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.三、解答题(共66分)19、(1)①BD=2;②证明见详解;(2)25或【解析】

(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)先解方程,求出AB和BC的长度,然后根据题意,讨论当AB=AE,或AB=BF时,四边形ABFE是等腰直角四边形.当AB=AE=4时,连接EF,过F作FG⊥AE,交AE于点G,可得运动的时间为4s,可得CF=8,然后得到GE=2,利用勾股定理得到EF的长度;当AB=BF=4时,连接EF,过点E作EH⊥BF,交BF于点H,可得CF=6,运动的时间为3s,可得AE=3,然后得到FH=1,利用勾股定理求得EF的长度.【详解】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC=12②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠BAC=∠BCA,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)由AB和BC的长度是方程x2-14x+40=0解方程:x2-14x+40=0得,x∵BC>AB,∴AB=4,BC=10.根据题意,当AB=AE和AB=BF时,四边形ABFE是等腰直角四边形;当AB=AE时,如图,连接EF,过F作FG⊥AE,交AE于点G:∴AB=AE=4,四边形ABFG是矩形,∴运动的时间为:4÷1=4s∴CF=2×4=8,∴BF=2=AG,∴GE=2,GF=AB=4,由勾股定理得:EF=22当AB=BF时,如图,连接EF,过点E作EH⊥BF,交BF于点H:∴AB=BF=4,∴CF=10-4=6,则运动的时间为:6÷2=3s∴AE=3,EH=AB=4∴FH=4-3=1,由勾股定理得:EF=12故EF的长度为:25或17【点睛】本题考查四边形综合题、矩形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.20、见解析【解析】试题分析:(1)根据题意补全图形,如图所示;

(2)由旋转的性质得到为直角,由EF与CD平行,得到为直角,利用SAS得到与全等,利用全等三角形对应角相等即可得证.试题解析:(1)补全图形,如图所示;(2)由旋转的性质得:∴∠DCE+∠ECF=,∵∠ACB=,∴∠DCE+∠BCD=,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=,∴∠EFC=,在△BDC和△EFC中,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=.21、(1)50;(2)见解析;(3)72°;(4)96人.【解析】

(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.【详解】(1)由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);故答案为:50;(2)由(1)的优秀的人数为:50−3−7−10−20=10人,(3)“中等”部分所对应的圆心角的度数是:×360°=72°,故答案为:72°;(4)全年级优秀人数为:(人).【点睛】此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.22、(1)4,6;(2)①;②存在,t=2或t=6.【解析】

(1)根据含30°角的直角三角形性质可得AB的长,利用勾股定理即可求出AC的长;(2)①根据平行四边形的性质可得AD//PE,AD=PE,根据折叠性质可得PE=AP,即可得AP=AD,由D为AB中点可得AD的长,即可得AP的长,进而可求出t的值;②分两种情况讨论:当BD为边时,设DE与PC相交于O,根据三角形内角和可得∠B=60°,根据平行四边形的性质可得CE=BD,CE//BD,BC//DE,可得∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,根据折叠性质可得∠ADP=∠EDP=30°,AP=PE,即可证明∠ADP=∠A,可得AP=PD=PE,可得∠PED=∠PDE=30°,即可得∠PEC=90°,根据含30°角的直角三角形的性质可得PC=2PE,利用勾股定理列方程可求出PE的长,即可得AP的长;当BD为对角线时,可证明平行四边形BCDE是菱形,根据菱形的性质可得∠DCE=30°,可证明DE=AD,∠ADC=∠CDE=120°,利用SAS可证明△ACD≌△ECD,可得AC=CE,根据翻折的性质可证明点P与点C重合,根据AC的长即可求出t值,综上即可得答案.【详解】(1)∵∠C=90°,∠A=30°,BC=,∴AB=2BC=4,∴AC==6.故答案为:4,6(2)①如图,∵D为AB中点,∴AD=BD=AB,∵BC=AB,∴AD=BD=BC=,∵ADEP是平行四边形,∴AD//PE,AD=PE,∵△APD沿PD翻折得到△EPD,∴AP=PE,∴AP=AD=,∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,∴t=.故答案为:②存在,理由如下:i如图,当BD为边时,设DE与PC相交于O,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵四边形DBCE是平行四边形,∴CE=BD,CE//BD,DE//BC,∴∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,∵△APD沿PD翻折得到△EPD,∴∠ADP=∠EDP=30°,AP=PE,∴∠PAD=∠PDA=30°,∴AP=PD=PE,∴∠PED=∠PDE=30°,∴∠PEC=∠PED+∠DEC=90°,∵∠ECP=30°,∴PC=2PE,∴PC2=PE2+EC2,即4PE2=PE2+()2解得:PE=2或PE=-2(舍去),∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,∴t=2.ii当BD为对角线时,∵BC=BD=AD,∠B=60°,∴△BCD都是等边三角形,∴∠ACD=30°,∵四边形DBCE是平行四边形,∴平行四边形BCDE为菱形,∴DE=AD,∠ADC=∠CDE=120°,又∵CD=CD,∴△ACD≌△ECD,∴AC=CE,∴△ECD是△ACD沿CD翻折得到,∵△APD沿PD翻折得到△EPD,∴点P与点C重合,∴AP=AC=6.∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,∴t=6.故当t=2或t=6时,以B、C、E、D为顶点的四边形是平行四边形.【点睛】本题考查含30°角的直角三角形的性质及平行四边形的性质,在直角三角形中,30°所对的直角边是斜边的一半;熟练掌握相关性质是解题关键.23、(1)①见解析,②见解析;(2)四边形是平行四边形,见解析.【解析】

(1)根据角平分线的做法即可求解;(2)根据等腰三角形的性质及角平分线的性质证明,即可求证.【详解】(1)①作图正确并有轨迹。②连接并延长交于点,连接;(2)解:四边形是平行四边形,理由如下:∵,∴,∴,即,∵平分,∴,∴,∴,∵点时中点,∴,在与中∴∴四边形是平行四边形。【点睛】此题主要考查平行四边形的判定,解题的关键是熟知角平分线的做法及全等三角形的判定判断与性质.24、线段GF的长度是4【解析】

根据题意得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论