




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省沈阳市第一三四中学八下数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为()A.1 B. C.2﹣ D.﹣12.对于数据:80,88,85,85,83,83,1.下列说法中错误的有()①这组数据的平均数是1;②这组数据的众数是85;③这组数据的中位数是1;④这组数据的方差是2.A.1个 B.2个 C.3个 D.4个3.为了了解某校学生的课外阅读情况,随机抽查了名学生周阅读用时数,结果如下表:周阅读用时数(小时)45812学生人数(人)3421则关于这名学生周阅读所用时间,下列说法正确的是()A.中位数是 B.众数是 C.平均数是 D.方差是4.如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A.当时,随的增大而增大B.当时,随的增大而减小C.当时,随的增大而增大D.当时,随的增大而减小5.如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()A.8.3 B.9.6 C.12.6 D.13.66.龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m.在修建完400m后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm,依题意列方程得()A. B.C. D.7.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是A.S1>S2 B.S1=S2 C.S1<S2 D.3S1=2S28.如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()A.四边形一定是平行四边形B.若,则四边形是矩形C.若四边形是菱形,则是等边三角形D.若四边形是正方形,则是等腰直角三角形9.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65° B.60°C.55° D.45°10.若m个数的平均数x,另n个数的平均数y,则m+n个数的平均数是()A. B. C. D.11.若分式方程有增根,则a的值是()A.4 B.3 C.2 D.112.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4 B.4,5,6 C.5,12,13 D.5,6,7二、填空题(每题4分,共24分)13.当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.14.图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.15.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH丄AE于点H,连接BH并延长交CD于点F,连接DE交BF①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正确的有__________(只填序号).16.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.17.在一列数2,3,3,5,7中,他们的平均数为__________.18.当时,分式的值是________.三、解答题(共78分)19.(8分)小林为探索函数的图象与性经历了如下过程(1)列表:根据表中的取值,求出对应的值,将空白处填写完整2.533.544.556____2____1.21(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象.(3)若函数的图象与的图象交于点,,且为正整数),则的值是_____.20.(8分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.21.(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.22.(10分)为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:(1)求所抽取的样本的容量;(2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?(3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?(4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.23.(10分)如图,平行四边形ABCD中,,,AE平分交BC的延长线于F点,求CF的长.24.(10分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.25.(12分)如图矩形ABCD中,AB=12,BC=8,E、F分别为AB、CD的中点,点P、Q从A.C同时出发,在边AD、CB上以每秒1个单位向D、B运动,运动时间为t(0<t<8).(1)如图1,连接PE、EQ、QF、PF,求证:无论t在0<t<8内取任何值,四边形PEQF总为平行四边形;(2)如图2,连接PQ交CE于G,若PG=4QG,求t的值;(3)在运动过程中,是否存在某时刻使得PQ⊥CE于G?若存在,请求出t的值:若不存在,请说明理由26.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由菱形ABCO,∠AOC=60°,由解直角三角形可以设A(m,m),又点A在反比例函数的图像上,带入可以求出A的坐标,进而可以求出OA的长度,即OC可求.再根据菱形ABCO,∠AOC=60°,可知∠BOC=30°,可设E(n,0),则D(n,n),带入反比例函数的解析式可以求出E点坐标,于是CE=OC-OE,可求.【详解】解:∵四边形ABCO为菱形,∠AOC=60°,∴可设A(m,m),又∵A点在反比例函数y=上,∴m2=2,得m=(由题意舍m=-),∴A(,),OA=2,∴OC=OA=2,又∵四边形ABCO为菱形,∠AOC=60°,OB为四边形ABCO的对角线,∴∠BOC=30°,可设D(n,n),则E(n,0),∵D在反比例函数y=上,∴n2=2,解得n=(由题意舍n=-),∴E(,0),∴OE=,则有CE=OC-OE=2-.故答案选C.【点睛】掌握菱形的性质,理解“30°角所对应的直角边等于斜边的一半”,再依据勾股定理分别设出点A和点D的坐标,代入反比例函数的解析式.灵活运用菱形和反比例函数的性质和解直角三角形是解题的关键.2、B【解析】由平均数公式可得这组数据的平均数为1;在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;其方差为,故选B.3、D【解析】
A:根据中位数、众数、平均数以及方差的概念以及求解方法逐一求出进而进行判断即可.【详解】这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,∴这10名学生周阅读所用时间的中位数是:(5+5)÷2=10÷2=5,∴选项A不正确;∵这10名学生周阅读所用时间出现次数最多的是5小时,∴这10名学生周阅读所用时间的众数是5,∴选项B不正确;∵(4×3+5×4+8×2+12)÷10=60÷10=6∴这10名学生周阅读所用时间的平均数是6,∴选项C不正确;∵×[3×(4-6)2+4×(5-6)2+2×(8-6)2+(12-6)2]=6,∴这10名学生周阅读所用时间的方差是6,∴选项D正确,故选D.【点睛】本题考查了加权平均数、中位数和众数、方差等,熟练掌握相关概念以及求解方法是解题的关键.4、A【解析】
根据一次函数的图象对各项分析判断即可.【详解】观察图象可知:A.当时,图象呈上升趋势,随的增大而增大,正确.B.当时,图象呈上升趋势,随的增大而减小,故错误.C.当时,随的增大而减小,当时,随的增大而增大,故错误.D.当时,随的增大而减小,当时,随的增大而增大,故错误.故选A.【点睛】考查一次函数的图象与性质,读懂图象是解题的关键.5、B【解析】解:根据平行四边形的中心对称性得:OF=OE=1.1.∵▱ABCD的周长=(4+1)×2=14∴四边形BCEF的周长=×▱ABCD的周长+2.2=9.2.故选B.6、C【解析】
设原计划每天修建xm,则实际每天修建(1+25%)xm,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.【详解】解:设原计划每天修建xm,则实际每天修建(1+25%)xm,由题意得:故选C.7、B【解析】
由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.【详解】∵矩形ABCD的面积S=2S△ABC,S△ABC=S矩形AEFC,∴S1=S2故选B8、C【解析】
利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.【详解】解:∵点D,E,F分别是AB,BC,AC的中点,,∴四边形ADEF是平行四边形故A正确,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC∴△ABC是等腰三角形故C不一定正确若四边形ADEF是正方形,则AD=AF,∠A=90°∴AB=AC,∠A=90°∴△ABC是等腰直角三角形故D正确故选:C.【点睛】本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.9、A【解析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.10、C【解析】
m+n个数的平均数=,故选C.11、A【解析】
要使分式方程有增根,则首先判断增根,再将增根代入化简后的方程中计算参数即可.【详解】解:原方程两边同乘以(x﹣3)得1+(x﹣3)=a﹣x∵方程有增根,∴将x=3代入得1+(3﹣3)=a﹣3∴a=4故选:A.【点睛】本题主要考查分式方程中增根的计算,关键在于准确的判断增根.12、C【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【详解】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选C.【点睛】本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(每题4分,共24分)13、-2【解析】
∵函数y=-(m-2)+(m-4)是一次函数,∴,∴m=-2.故答案为-214、(1);(2)见解析.【解析】
(1)利用等边三角形的性质,解直角三角形即可解决问题.(2)利用数形结合的思想解决问题即可(答案不唯一).【详解】解:(1)AB=2×1×cos30°=,故答案为:.(2)如图②中,△DEF即为所求.【点睛】本题考查作图——应用与设计,等边三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、①②③④【解析】
①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=2AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【详解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=2AB,∵AD=2AB,∴AE=AD,在△ABE和△AHD中,∵∠BAE=∠DAE,∠ABE=∠AHD=90°,AE=AD,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°-45°)=67.5°∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=12(180°-45°)=67.5°,∠OHE=∠AHB∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,∵∠EBH=∠OHD=22.5°,BE=DH,∠AEB=∠HDF=45°,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④.故答案为:①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.16、1.【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=1,CE=BC−BE=6−2=1,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=1,故答案为1.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.17、1【解析】
直接利用算术平均数的定义列式计算可得.【详解】解:这组数据的平均数为=1,故答案为:1.【点睛】本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.18、2021【解析】
先根据平方差公式对分式进行化简,再将代入即可得到答案.【详解】==(a+2),将代入得原式=2019+2=2021.【点睛】本题考察平方差公式和分式的化简,解题的关键是掌握平方差公式和分式的化简.三、解答题(共78分)19、(1)3,1.5;(1)见解析;(3)1.【解析】
(1)当时,,即可求解;(1)描点描绘出以下图象,(3)在(1)图象基础上,画出,两个函数交点为,,即可求解.【详解】解:(1)当时,,同理当时,,故答案为3,1.5;(1)描点描绘出以下图象,(3)在(1)图象基础上,画出,两个函数交点为,,即,故答案为1.【点睛】本题考查的是反比例函数综合运用,涉及到一次函数基本性质、复杂函数的作图,此类题目通常在作图的基础上,依据图上点和线之间的关系求解.20、见解析.【解析】
利用根的判别式△≥1时,进行计算即可【详解】△=,所以,方程总有两个实数根.【点睛】此题考查根的判别式,掌握运算法则是解题关键21、(1)(2)证明见解析(3).【解析】
(1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;(2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.【详解】(1)如图,连接AC,则有S△ABC+S△ACD=S四边形ABCD=5,∵E、F分别为BC、CD中点,∴S△AEC=S△ABC,S△AFC=S△ADC,∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC=S四边形ABCD=,故答案为:;(2)如图,连接EF,∵E、F分别是BC,CD的中点,∴EF∥BD,EF=BD.,∵EG=AE,FH=AF,∴EF∥GH,EF=GH.,∴BD∥GH,BD=GH.,∴四边形BGHD是平行四边形;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,在△BPE和△CQE中,∴△BPE≌△CQE(SAS),∴BP=CQ,∠PBE=∠QCE,∴BP//CQ,同理:CO=ND,CO//ND,∴Q、C、O三点共线,∴BD//OQ,∴△APM∽△AQC,∴PM:CQ=AM:AC,同理:MN:CO=AM:AC,∴.【点睛】本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.22、(1)40;(2)1250户;(3)活动后,这些样本家庭每月水电费开支的总额不低于6000元.(4)开支在225以下的户数上可以看出节约水电活动的效果还不错.【解析】
(1)将频数分布直方图各分组频数相加即可得样本容量;(2)分别计算出活动前、后达到节约标准的家庭数,相减即可得;(3)取各分组的组中值,再分别乘以各分组的频数,相加即可得;(4)根据统计图中的数据可以解答本题,本题答案不唯一,只要合理即可..【详解】解:(1)所抽取的样本的容量为6+12+11+7+3+1=40;
(2)活动前达到节约标准的家庭数为10000×=7250(户),
活动后达到节约标准的家庭数为10000×=8500(户),
85007250=1250(户),
∴该城市大约增加了1250户家庭达到节约标准;
(3)这40户家庭每月水电费开支总额为:7×100+13×150+14×200+4×250+2×300=7050(元),
∴活动后,这些样本家庭每月水电费开支的总额不低于6000元.(4)根据题意可知,开支在225以下的户数上可以看出节约水电活动的效果还不错.【点睛】本题考查的是频数分布直方图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.频数分布直方图能清楚地表示出每个项目的数据.23、.
【解析】
由平行线性质得,,,再由角平分线性质得,故,由等腰三角形性质得,所以=5-3.【详解】解:四边形ABCD是平行四边形,,,,平分,,,,.【点睛】本题考核知识点:平行四边形性质,等腰三角形.解题关键点:先证等角,再证等边.24、证明见解析.【解析】
利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【详解】∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.【点睛】本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.25、(1)见解析;(2);(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 24129-2025胶鞋、运动鞋外底不留痕试验方法
- 计算机通信技术试题及答案
- 行政法学研讨会试题及答案分享
- 对火灾应急预案的评价(3篇)
- 儿科火灾应急演练预案(3篇)
- 计算机硬件选型与配置试题及答案
- 2025年企业整合与风险管理的策略探讨及试题及答案
- 2025年软件设计师考试的职业生涯规划试题及答案
- 2025年竞争优势构建与风险管理试题及答案
- 行政管理法律法规试题及答案
- 2023年全国统一高考生物试卷(广东卷)(含答案与解析)
- 2023年《中药商品学》期末考试复习题库(含答案)
- 威努特防火墙配置手册
- 模具工装检具加工申请单
- 南京求真中学新初一分班英语试卷含答案
- 山东省各地市地图课件
- 预见性思维在护理工作中的应用课件
- 新疆维吾尔阿克苏地区2023-2024学年三年级数学第一学期期末学业水平测试试题含答案
- 抚养费一次性付清协议书
- 每日工作流程物业保安主管经理
- STEM教学设计与实施PPT完整全套教学课件
评论
0/150
提交评论