广东省莞市东华中学2025年数学八下期末达标检测模拟试题含解析_第1页
广东省莞市东华中学2025年数学八下期末达标检测模拟试题含解析_第2页
广东省莞市东华中学2025年数学八下期末达标检测模拟试题含解析_第3页
广东省莞市东华中学2025年数学八下期末达标检测模拟试题含解析_第4页
广东省莞市东华中学2025年数学八下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省莞市东华中学2025年数学八下期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥ C.0<k< D.≤k≤22.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是()A.甲 B.乙 C.丙 D.丁3.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为().A.22 B.18 C.14 D.114.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A. B. C. D.5.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.6.在下列数据6,5,7,5,8,6,6中,众数是()A.5 B.6 C.7 D.87.某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是()A.27 B.28 C.29 D.308.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是()A.16 B.18 C.20 D.229.方程x2+x﹣12=0的两个根为(

)A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=310.已知:如果二次根式是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2811.如果一个多边形的内角和等于它的外角和,那么这个多边形是()A.六边形 B.五边形 C.四边形 D.三角形12.如图,在ΔABC中,∠C=90∘,∠A=30∘,AB=6,则A.3 B.32 C.33二、填空题(每题4分,共24分)13.关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.14.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.15.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:已知x3=10648,且x为整数∵1000=103<10648<1003=1000000,∴x一定是______位数∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是_____;∴x=______.16.如果关于x的分式方程有增根,那么m的值为______.17.若关于的方程有增根,则的值是___________.18.把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________三、解答题(共78分)19.(8分)如图是单位长度为1的正方形网格.(1)在图1中画出一条长度为的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.20.(8分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒(1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;(2)在同一个坐标系内分别画出(1)题中的两个函数的图象;(3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.21.(8分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.22.(10分)如图,的顶点坐标分别为,.(1)画出关于点的中心对称图形;(2)画出绕原点逆时针旋转的,直接写出点的坐标(3)若内一点绕原点逆时针旋转的上对应点为,请写出的坐标.(用含,的式子表示).23.(10分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于D,(1)直接写直线y=2x+2与坐标轴所围成的图形的面积(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.问:AP与PF有怎样的数量关系和位置关系?并说明理由;(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.24.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上.(1)先将ABC向上平移4个单位后得到的A1B1C1,再将A1B1C1绕点C1按顺时针方向旋转90°后所得到的A2B2C1,在图中画出A1B1C1和A2B2C1.(2)A2B2C1能由ABC绕着点O旋转得到,请在网格上标出点O.25.(12分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.26.已知:如图,在▱ABCD中,设=,=.(1)填空:=(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)

参考答案一、选择题(每题4分,共48分)1、D【解析】

如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.【详解】解:直线与正方形有公共点,直线在过点和点两直线之间之间,如图,可知,,当直线过点时,代入可得,解得,当直线过点时,代入可得,解得,的取值范围为:,故选:.【点睛】本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.2、D【解析】

根据方差的定义,方差越小数据越稳定.【详解】∵0.02<0.03<0.05<0.11,∴丁的成绩的方差最小,∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。故选:D.【点睛】此题考查方差,解题关键在于掌握其定义3、A【解析】试题分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB=4,然后求出EC=BE+BC=4+4=8,同理可得AF=8,因为AD∥BC,所以四边形AECF是平行四边形,所以四边形AECF的周长=2(AE+EC)=2(3+8)=1.故选A.考点:菱形的性质;平行四边形的判定与性质.4、B【解析】由题意可知△DEF与△ABC的位似比为1︰2,∴其面积比是1︰4,故选B.5、D【解析】

根据三角形内角和定理以及直角三角形的性质即可求出答案.【详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【点睛】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.6、B【解析】

根据众数的概念进行解答即可.【详解】在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,所以这组数据的众数是6,故选B.【点睛】本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.7、B【解析】分析:根据出现次数最多的数是众数解答.详解:27出现1次;1出现3次;29出现2次;30出现2次;所以,众数是1.故选B.点睛:本题考查了众数的定义,熟记出现次数最多的是众数是解题的关键.8、C【解析】试题分析:根据平行四边形的性质可得AO=6,则根据Rt△AOB的勾股定理得出BO=10,则BD=2BO=20.考点:平行四边形的性质9、D【解析】

利用因式分解法解方程即可得出结论.【详解】解:x2+x-12=0(x+4)(x-1)=0,

则x+4=0,或x-1=0,

解得:x1=-4,x2=1.

故选:D.【点睛】本题考查因式分解法解一元二次方程,熟练掌握因式分解的方法是解题的关键.10、C【解析】

先将化为最简二次根式,然后根据是整数可得出n的最小值.【详解】=2,又∵是整数,∴n的最小值为1.故选C.【点睛】此题考查了二次根式的知识,解答本题的关键是将化为最简二次根式,难度一般.11、C【解析】

根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360°列方程求解即可.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=1.故选:C.【点睛】本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.12、A【解析】

根据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求解.【详解】解:∵在△ABC中,∠C=90°,∠A=30°,

∴BC=12AB=12×6=3,

故选:【点睛】本题考查了含30度的直角三角形的性质,正确掌握定理是解题的关键.二、填空题(每题4分,共24分)13、a<﹣7【解析】

求出方程的解,根据方程的解是正数得出>0,求出即可.【详解】解:3x+a=x-7

3x-x=-a-7

2x=-a-7

x=,

∵>0,

∴a<-7,

故答案为:a<-7【点睛】本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.14、八【解析】360°÷(180°-135°)=815、两;2;2;22【解析】

根据立方和立方根的定义逐一求解可得.【详解】已知,且为整数,,一定是两位数,的个位数字是,的个位数字一定是,划去后面的三位得,,的十位数字一定是,.故答案为:两、、、.【点睛】本题主要考查立方根,解题的关键是掌握立方与立方根的定义.16、-4【解析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】解:,去分母,方程两边同时乘以,得:,由分母可知,分式方程的增根可能是2,当时,,.故答案为.【点睛】考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.17、1【解析】解:方程两边都乘(x﹣2),得:x﹣1=m.∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18、y=-2x+1【解析】试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.故答案是y=﹣2x+1.考点:一次函数图象与几何变换.三、解答题(共78分)19、(1)画图见解析;(2)画图见解析.【解析】试题分析:(1)根据勾股定理作出以1和3直角边的三角形的斜边即可;(2)利用勾股定理作以为边的正方形即可.试题解析:(1)如图1所示;(2)如图2所示.【点睛】本题主要是考查勾股定理的应用,能根据题干的内容确定直角三角形的两边长是解决此类问题的关键.20、(1)y1==-7x+600,y2==3x+440(2)答案见解析(3)答案见解析【解析】

(1)根据两种盈利模式,分别列出y1、y2关于x的函数解析式;(2)利用描点法画出两函数图像;(3)由y1=y2,建立关于x的方程,解方程求出x的值,就可得到两函数的交点坐标,再利用一次函数的性质,就可得出当0≤x≤40时,y1随x的增大而增大,y2随x的增大而减小,可得到每一个自变量x都有唯一的一个y的值与之对应,由此可得出判断.【详解】(1)解:由题意得:y1=8x+15(40-x)=-7x+600,y2=14x+11(40-x)=3x+440;(2)解:如图,(3)解:当y1=y2时,-7x+600=3x+440解之:x=16∴x=16时,y=3×16+440=488当0≤x≤40时,y1随x的增大而增大,y2随x的增大而减小,∴∴每一个自变量x都有唯一的一个y的值与之对应,∴y是x的函数,当x=16时,y的最小值为488.【点睛】本题主要考查一次函数的应用,根据题意列出函数关系式并能熟练掌握一次函数的性质是解答本题的关键.21、见解析【解析】分析:(1)由已知条件易得∠CED=∠BFD,BD=CD,结合∠BDF=∠CDE即可证得:△BDF≌△CDE;(2)由△BDF≌△CDE易得DE=DF,结合BD=CD可得四边形BFCE是平行四边形,结合DE=BC可得EF=BC,由此即可证得平行四边形BFCE是矩形.详解:(1)∵CE∥BF,∴∠CED=∠BFD.∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,,∴△BDF≌△CDE(AAS).(2)四边形BFCE是矩形.理由如下:∵△BDF≌△CDE,∴DE=DF,又∵BD=DC,∴四边形BFCE是平行四边形.∵DE=BC,DE=EF,∴BC=EF,∴平行四边形BFCE是矩形.点睛:熟悉“平行四边形和矩形的判定方法”是解答本题的关键.22、(1)见解析;(2),见解析;(3).【解析】

(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;

(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;

(3)利用(2)中对应点的规律写出Q的坐标.【详解】解:(1)如图,为所作;(2)如图,为所作,点的坐标为;(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为.故答案为:(1)见解析;(2),见解析;(3).【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析【解析】

(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.【详解】(1)∵直线y=1x+1交x轴于A,交y轴于D,令x=0,解得y=1,∴D(0,1)令y=0,解得x=-1,∴A(-1,0)∴AO=1,DO=1,∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;(1)AP=PF且AP⊥PF,理由如下:过点A作AH⊥DB,如图,∵A(-1,0),D(0,1)∴AD===AB,∵四边形ABCD是正方形∴BD==,∴AH=DH=BD=,而PG=,∴DP+BG=,而DH=DP+PH=∴PH=BG,∵∠GBF=45°∴BG=GF=HP∴Rt△APH≌Rt△PFG,∴AP=PF,∠PAH=∠PFG∴∠APH+∠GPF=90°即AP⊥PF;(3)PD1+BG1=PG1,理由如下:如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,∴∠MDP=90°,∴DP1+BG1=PM1,又∵∠PAG=45°,∴∠DAP+∠BAG=45°,∴∠MAD+∠DAP=45°,即∠MAP=45°,而AM=AG,∴△AMP≌△AGP,∴MP=PG,∴PD1+BG1=PG1【点睛】此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.24、(1)详见解析;(2)详见解析【解析】

(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接可得A1B1C1,再根据旋转的性质找出点A1、B1绕点C1按顺时针方向旋转90°后所得到的对应点A2、B2,再顺次连接A2、B2、C1即可;(2)连接AA2,CC1,结合网格特点分别作AA2,CC1的中垂线,两线交点即为O.【详解】(1)如图所示,△A1B1C1和△A2B2C1为所求;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论