山西省朔州市2025年数学八下期末学业质量监测试题含解析_第1页
山西省朔州市2025年数学八下期末学业质量监测试题含解析_第2页
山西省朔州市2025年数学八下期末学业质量监测试题含解析_第3页
山西省朔州市2025年数学八下期末学业质量监测试题含解析_第4页
山西省朔州市2025年数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市2025年数学八下期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.五边形 B.六边形 C.七边形 D.八边形2.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠AEB等于()A.18° B.36° C.72° D.108°3.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO4.若化简的结果为,则的取值范围是()A.一切实数 B. C. D.5.要使式子有意义,则的取值范围是()A. B. C. D.6.点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定7.直线y=kx+b不经过第三象限,则k、b应满足()A.k>0,b<0B.k<0,b>0C.k<0b<0D.k<0,b≥08.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的数为()A.2 B. C. D.9.一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2) C.(2,0) D.(﹣2,0)10.一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限11.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是()A.5、2.5 B.20、10 C.5、3.75 D.5、1.2512.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想 B.分类讨论 C.方程思想 D.数形结合思想二、填空题(每题4分,共24分)13.若因式分解:__________.14.甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).15.直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.16.函数的自变量的取值范围是.17.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)三、解答题(共78分)19.(8分)某班“数学兴趣小组”对函数y=x−2|x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:其中,m=___.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)探究函数图象发现:①函数图象与x轴有___个交点,所以对应的方程x−2|x|=0有___个实数根;②方程x−2|x|=−有___个实数根;③关于x的方程x−2|x|=a有4个实数根时,a的取值范围是___.20.(8分)解方程:3(x﹣7)=4x(x﹣7)21.(8分)已知BD是△ABC的角平分线,ED⊥BC,∠BAC=90°,∠C=30°.(1)求证:CE=BE;(2)若AD=3,求△ABC的面积.22.(10分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11个小时,大大方便了人们出行,已知高铁行驶速度是原来火车速度的3.2倍,求高铁的行驶速度.23.(10分)2020年初,“新型冠状病毒”肆虐全国,武汉“封城”.大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物.某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元.在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?24.(10分)中,分别是上的不动点.且,点是上的一动点.(1)当时(如图1),求的度数;(2)若时(如图2),求的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,A(1,1),B(4,1),C(2,3).(1)在图中作出△ABC关于y轴的轴对称图形△A′B′C′;(2)在图中作出△ABC关于原点O中心对称图形△A"B"C".26.(1)因式分解:;(2)解分式方程:;(3)解不等式组:;

参考答案一、选择题(每题4分,共48分)1、D【解析】

设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.【详解】设这个多边形的边数为n,依题意得

(n-2)×180°=3×360°,

解得n=8,

∴这个多边形为八边形,

故选D.【点睛】此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.2、B【解析】

首先根据平行四边形的性质,得出∠ABC的度数,又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是内错角,相等,即可得出∠AEB.【详解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案为B.【点睛】此题主要考查利用平行四边形的性质求角的度数,熟练掌握即可解题.3、D【解析】A选项:∵AD∥BC,

∴∠ADB=∠CBD,

在△BOC和△DOA中,∴△BOC≌△DOA(AAS),

∴BO=DO,

∴四边形ABCD是平行四边形,正确,故本选项错误;

B选项:∵∠ABC=∠ADC,AD∥BC,

∴∠ADC+∠DCB=180°,

∴∠ABC+∠BCD=180°,

∴AB∥DC,

∴四边形ABCD是平行四边形,正确,故本选项错误;

C选项:∵AB=CD,AD=BC,

∴四边形ABCD是平行四边形,正确,故本选项错误;

D选项:由∠ABD=∠ADB,∠BAO=∠DCO,

无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】平行四边形的判定有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.4、B【解析】

根据完全平方公式先把多项式化简为|1−x|−|x−4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为,当,时,可得无解,不符合题意;当,时,可得时,原式;当,时,可得时,原式;当,时,可得时,原式.据以上分析可得当时,多项式等于.故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论5、D【解析】

根据二次根式被开方数必须是非负数的条件,要使在有意义,必须.

故选D.6、B【解析】试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.解:∵直线y=﹣1x+3中,k=﹣1<0,∴此函数中y随x的增大而减小,∵3>﹣1,∴y1<y1.故选B.考点:一次函数图象上点的坐标特征.7、D.【解析】试题解析:∵直线y=kx+b不经过第三象限,∴y=kx+b的图象经过第一、二、四象限或第二,四象限,∵直线必经过二、四象限,∴k<1.当图象过一、二四象限,直线与y轴正半轴相交时:b>1.当图象过原点时:b=1,∴b≥1,故选D.考点:一次函数图象与系数的关系.8、C【解析】

在Rt△​ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.【详解】解:由题意得,AC===,∴AM=,∴点M表示的数为,故选:C.【点睛】此题考查了勾股定理与无理数,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.9、A【解析】分析:在解析式中,令y=0,即可求得与x轴交点的坐标了.详解:当y=0时,x+2=0,解得x=−2,所以一次函数的图象与x轴的交点坐标为(−2,0).故选D.点睛:本题考查了一次函数图像上点的坐标特征.解题的关键点:与x轴的交点即纵坐标为零.10、D【解析】∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.解得,或.∴k<1,b<1.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.∴直线y=kx+b经过二、三、四象限.故选D.11、C【解析】试题分析:∵t=4时,y=20,∴每分钟的进水量==5(升);∴4到12分钟,8分钟的进水量=8×5=40(升),而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量==3.75(升).故选C.考点:一次函数的应用.12、A【解析】

根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.二、填空题(每题4分,共24分)13、【解析】

应用提取公因式法,公因式x,再运用平方差公式,即可得解.【详解】解:【点睛】此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.14、乙【解析】

根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、1【解析】

根据边之间的关系,运用勾股定理,列方程解答即可.【详解】由题意可设两条直角边长分别为x,2x,由勾股定理得x2+(2x)2=(1)2,解得x1=1,x2=-1舍去),所以较短的直角边长为1.故答案为:1【点睛】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.16、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠117、或或1【解析】

如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或1.18、(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).三、解答题(共78分)19、(1)0;(2)见解析;(3)①3、3;②4;③0<a<−1.【解析】

(1)根据当x=2或x=-2时函数值相等即可得;(2)将坐标系中y轴左侧的点按照从左到右的顺序用平滑的曲线依次连接可得;(3)①根据函数图象与x轴的交点个数与对应方程的解的个数间的关系可得;②由直线y=-与y=x-2|x|的图象有4个交点可得;③关于x的方程x-2|x|=a有4个实数根时,0<a<-1.【详解】(1)由函数解析式y=x−2|x|知,当x=2或x=−2时函数值相等,∴当x=−2时,m=0,故答案为:0;(2)如图所示:(3)①由图象可知,函数图象与x轴有3个交点,所以对应的方程x−2|x|=0有3个实数根;②由函数图象知,直线y=−与y=x−2|x|的图象有4个交点,所以方程x−2|x|=−有4个实数根;③由函数图象知,关于x的方程x−2|x|=a有4个实数根时,0<a<−1,故答案为:0<a<−1;故答案为:①3、3;②4;③0<a<−1.【点睛】此题考查二次函数的性质,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.20、x1=,x2=1.【解析】

整体移项后,利用分解因式法进行求解即可.【详解】移项,得3(x-1)-4x(x-1)=0,因式分解,得(3-4x)(x-1)=0,由此得3-4x=0或x-1=0,解得x1=,x2=1.【点睛】本题考查了解一元二次方程——因式分解法,根据一元二次方程的特点灵活选用恰当的方法进行求解是关键.21、(1)见解析;(2)△ABC的面积=.【解析】

(1)根据直角三角形的性质和角平分线的定义证出∠C=∠DBC,然后根据等角对等边即可证出DC=DB,然后利用三线合一即可得出结论;(2)利用30°所对的直角边是斜边的一半即可求出BD和AB,从而求出AC,然后根据三角形的面积公式计算即可.【详解】(1)证明:∵∠A=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=∠ABC=30°,∴∠C=∠DBC,∴DC=DB,∵DE⊥BC,∴EC=BE.(2)解:在Rt△ABD中,∵∠A=90°,AD=3,∠ABD=30°,∴BD=2AD=6,AB==3,∴DB=DC=6,∴AC=9,∴△ABC的面积=×=.【点睛】此题考查的是直角三角形的性质、等腰三角形的判定及性质和勾股定理,掌握30°所对的直角边是斜边的一半、等角对等边、三线合一和利用勾股定理解直角三角形是解决此题的关键.22、高铁的行驶速度为1千米/时.【解析】

设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,根据时间=路程÷速度结合高铁比原来的火车省11小时,即可得出关于x的分式方程,解之即可得出结论.【详解】设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,根据题意得:,解得:x=80,经检验,x=80是原分式方程的解,∴3.2x=3.2×80=1.答:高铁的行驶速度为1千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1元.【解析】

(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,根据“2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,根据10辆车的总运载量不少于234吨,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数即可得出各派车方案,设总燃油费为w元,根据总燃油费=每辆车的燃油费×派车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】解:(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,依题意得:,解得:,答:每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,依题意得:18m+26(10−m)≥234,解得:m≤,又∵m为正整数,∴m可以为1,2,3,∴公司有3种派车方案,方案1:安排1辆甲车,9辆乙车;方案2:安排2辆甲车,8辆乙车;方案3:安排3辆甲车,7辆乙车;设总燃油费为w元,则w=2000m+2600(10−m)=−600m+26000,∵k=−600,∴w随m的增大而减小,∴当m=3时,w取得最小值,最小值=−600×3+26000=1(元),答:公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1.【点睛】本题考查了二元一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论