




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省九江市外国语学校2025届数学八下期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.“龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后.决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(表示乌龟从起点出发所行的时间,表示乌龟所行的路程,表示兔子所行的路程.下列说法中:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处上了乌龟.正确的有:()A.1个 B.2个 C.3个 D.4个2.如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为A.B.C.D.3.如图,三个正比例函数的图像分别对应的解析式是:①;②;③,则、、的大小关系是().A. B. C. D.4.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>05.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.206.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条 B.4条 C.5条 D.6条7.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8xD.x2+1=x(x+)8.若关于的一元二次方程通过配方法可以化成的形式,则的值不可能是A.3 B.6 C.9 D.109.下列调查中,适合用全面调查方法的是()A.了解某校数学教师的年龄状况 B.了解一批电视机的使用寿命C.了解我市中学生的近视率 D.了解我市居民的年人均收入10.如果关于的一元二次方程有实数根,那么的取值范围是()A. B. C. D.且二、填空题(每小题3分,共24分)11.如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.12.如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.当时,正方形ABCD的边长______.连结OD,当时,______.13.如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.14.若二次根式有意义,则x的取值范围是________.15.已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.16.若y=++2,则x+y=_____.17.如图,某居民小区要一块一边靠墙的空地上建一个长方形花园,花园的中间用平行于的栅栏隔开,一边靠墙,其余部分用总长为米的栅栏围成且面积刚好等于平方米,求围成花园的宽为多少米?设米,由题意可列方程为______.18.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x<ax+4的解集为____________.三、解答题(共66分)19.(10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级班40名学生读书册数的情况如表读书册数45678人数人6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.20.(6分)某校八年级为庆祝中华人民共和国建国70周年,准备举行唱红歌、颂经典活动.八年级(2)班积极准备,需购买文件夹若干,某文具店有甲、乙两种文件夹.(1)若该班只购买甲种文件夹,且购买甲种文件夹的花费(单位:元)与其购买数量(单位:件)满足一次函数关系,若购买20个,需花费180元;若购买30个,需花费260元.该班若需购买甲种文件夹60件,求需花费多少元?(2)若该班购买甲,乙两种文件夹,那么甲种文件夹的单价比乙种文件夹的单价贵2元,若用240元购买甲种文件夹的数量与用180元购买乙种文件夹的数量相同.求该文具店甲乙两种文件夹的单价分别是多少元?21.(6分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).(1)求直线AB的解析式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.22.(8分)如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=1.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.23.(8分)如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=°(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.24.(8分)如图,在▱ABCD中,点E是CD的中点,连接BE并延长交AD延长线于点F.(1)求证:点D是AF的中点;(2)若AB=2BC,连接AE,试判断AE与BF的位置关系,并说明理由.25.(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)26.(10分)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】解:由图可得,“龟兔再次赛跑”的路程为1000米,故①正确;乌龟先出发,兔子在乌龟出发40分钟时出发,故②错误;乌龟在途中休息了:40-30=10(分钟),故③正确;当40≤x≤60,设y1=kx+b,由题意得,解得k=20,b=-200,∴y1=20x-200(40≤x≤60).当40≤x≤50,设y2=mx+n,由题意得,解得m=100,n=-4000,∴y2=100x-4000(40≤x≤50).当y1=y2时,兔子追上乌龟,此时20x-200=100x-4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、B【解析】
由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.【详解】解:因为,正方形ABCD与正方形EBHG的边长均为,所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,所以,BD=,所以,DE=BD-BE=2-,所以,OD=故选B.【点睛】本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.3、C【解析】
根据正比例函数图象的性质分析,k>0,经过一、三象限;k<0,经过二、四象限,图像越靠近y轴越大,即可得到答案.【详解】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴,,,∵②越靠近y轴,则,∴大小关系为:;故选择:C.【点睛】本题考查了正比例函数图象的性质:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越靠近y轴,则|k|越大.4、A【解析】
据正比例函数的增减性可得出(m-1)的范围,继而可得出m的取值范围.【详解】解:根据题意,知:y随x的增大而减小,则m﹣1<0,即m<1.故选:A.【点睛】能够根据两点坐标之间的大小关系,判断变化规律,再进一步根据正比例函数图象的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.列不等式求解集.5、C【解析】
由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题.【详解】∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选C.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时正确寻找全等三角形解决问题,属于中考常考题型.6、D【解析】
根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,再证得△ABO是等边三角形,推出AB=AO=8=DC,由此即可解答.【详解】∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOD=120°,∴∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故选D.【点睛】本题考查了矩形性质和等边三角形的性质和判定的应用,矩形的对角线互相平分且相等,矩形的对边相等.7、A【解析】
根据因式分解的概念逐项判断即可.【详解】A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;D、在等式的右边不是整式,故D不正确;故选A.8、D【解析】
方程配方得到结果,即可作出判断.【详解】解:方程,变形得:,配方得:,即,,即,则的值不可能是10,故选:.【点睛】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.9、A【解析】
根据全面调查适用于:调查对象较少,且容易进行,即可选出答案.【详解】A.人数不多,容易调查,适合全面调查,正确;B.数量较多,不容易进行,适合抽查,错误;C.人数较多,不容易进行,适合抽查,错误;D.人数较多,不容易全面调查,适合抽查,错误.故选A.【点睛】本题目考查调查方式的选择,难度不大,熟练掌握全面调查的适用条件是顺利解题的关键.10、D【解析】
利用一元二次方程的定义和判别式的意义得到k≠0且△=(-3)2-4×k×(-1)≥0,即可得出答案.【详解】解:方程为一元二次方程,.方程有实数的解,,.综合得且.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(每小题3分,共24分)11、【解析】
连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.【点睛】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,12、;4或6【解析】
(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.【详解】解:(4)当n=4时,OA=4,
在Rt△COA中,AC4=CO4+AO4=4.
∵ABCD为正方形,
∴AB=CB.
∴AC4=AB4+CB4=4AB4=4,
∴AB=.
故答案为.
(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠COD=∠CAD=45°.
又∵OD=,
∴DN=DM=4.
∴D(-4,4).
在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,
∴△DNA≌△DMC.
∴CM=AN=OC-MO=3.
∵D(-4,4),
∴A(4,0).
∴n=4.
如下图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠AOD=∠ACD=45°.
又∵OD=,
∴DN=DM=4.
∴D(4,-4).
同理:△DNA≌△DMC,则AN=CM=5.
∴OA=ON+AN=4+5=6.
∴A(6,0).
∴n=6.
综上所述,n的值为4或6.
故答案为4或6.【点睛】本题考核知识点:正方形性质、全等三角形性质,圆等.解题关键点:熟记相关知识点.13、3或6【解析】
根据点P的位置分类讨论,分别画出对应的图形,根据平行四边形的对边相等列出方程即可求出结论.【详解】解:当P运动在线段AD上运动时,AP=3t,CQ=t,∴DP=AD-AP=12-3t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12-3t=t,∴t=3秒;当P运动到AD线段以外时,AP=3t,CQ=t,∴DP=3t-12,∵四边形PDCQ是平行四边形,∴PD=CQ,∴3t-12=t,∴t=6秒,故答案为:3或6【点睛】此题考查的是平行四边形与动点问题,掌握平行四边形的对应边相等和分类讨论的数学思想是解决此题的关键.14、【解析】
根据二次根式有意义的条件可得-x≥0,再解不等式即可.解答【详解】由题意得:-x⩾0,解得:,故答案为:.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.15、3【解析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.16、5【解析】分析:根据被开方数大于等于0列式求出x,再求出y,然后相加计算即可得解.详解:由题意得,且,解得且所以,x=3,y=2,所以,x+y=3+2=5.故答案为5.点睛:考查二次根式有意义的条件,二次根式有意义的条件是:被开方数大于等于零.17、【解析】
根据题意设AB=x米,则BC=(30-3x)m,利用矩形面积得出答案.【详解】解:设AB=x米,由题意可列方程为:x(30-3x)=1.故答案为:x(30-3x)=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,正确表示出BC的长是解题关键.18、【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.【详解】解:两个条直线的交点坐标为A(1,3),当x<1时,直线y=ax+4在直线y=3x的上方,当x>1时,直线y=ax+4在直线y=3x的下方,故不等式3x<ax+4即直线y=ax+4在直线y=3x的上方的解集为x<1.故答案为:x<1.【点睛】本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.三、解答题(共66分)19、(1)该班学生读书册数的平均数为册.(2)该班学生读书册数的中位数为册.【解析】
(1)根据平均数=读书册数总数÷读书总人数,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【详解】解:该班学生读书册数的平均数为:册,答:该班学生读书册数的平均数为册.将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:册.答:该班学生读书册数的中位数为册.【点睛】本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20、(1)买60件需要花费:(元);(2)甲种文件夹每件8元,乙种文件夹每件6元.【解析】
(1)设一次函数解析式,根据题意列方程组即可;(2)该文具店甲乙两种文件夹的单价分别是x元和(x-2)元,根据题意列方程组即可.【详解】解:(1)设一次函数,∴,解得:,∴一次函数的解析式为.∴购买60件需要花费:(元).(2)设甲种文件夹每件元,则乙种文件夹每件元.解得:.经检验:是原方程的解,且符合题意,(元)答:甲种文件夹每件8元,乙种文件夹每件6元.【点睛】本题考查了一次函数的应用,分式方程的应用,正确理解题意是解题的关键.21、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).【解析】
(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;(2)利用即可求出结果;(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。【详解】(1)设直线AB的解析式是y=kx+b把A(0,1),B(3,0)代入得:解得:∴直线AB的解析式是:(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).3种情况,如图3,∠PCB=90°,∴∠CPB=∠EBP=45°,∴△PCB≌△BEP,∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,综上所述点C的坐标是(3,4)或(5,2)或(3,2).【点睛】本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质.解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.22、(1)证明见解析;(2)2.【解析】
(1)先证明△AOB≌△COD,可得OD=OB,从而根据对角线互相平分的四边形是平行四边形可证结论;(2)先根据对角线互相垂直的平行四边形是菱形证明四边形ABCD是菱形,然后根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:(1)∵AB//DC,∴∠1=∠2,∠3=∠4又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=2.【点睛】本题考查了平行四边形的判定,菱形的判定与性质,熟练掌握平行四边形的判定方法和菱形的判定方法是解答本题的关键.23、(1)见解析;(2)120°;(3)【解析】
(1)先判断出,即可得出结论;
(2)由已知条件可证得△ADC∽△ACB,得出D=∠4,再由已知条件和三角形内角和定理得出∠1+2∠1=180°,求出∠1=60°,即可得出∠DAB的度数;
(3)由已知得出AC2=AB•AD,∠DAC=∠CAB,证出△ADC∽△ACB,得出∠D=∠ACB=90°,由勾股定理求出AB,即可得出AD的长.【详解】(1)证明:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,∴AC2=AB•AD,∴,∵∠DAB为“可分角”,∴∠CAD=∠BAC,∴△DAC∽△CAB;(2)解:如图所示:∵AC平分∠DAB,∴∠1=∠2,∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠4,∵∠DCB=∠DAB,∴∠DCB=∠3+∠4=2∠1,∵∠1+∠D+∠3=∠1+∠4+∠3=180°,∴∠1+2∠1=180°,解得:∠1=60°,∴∠DAB=120°;故答案为:120;(3)解:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,∴AC2=AB•AD,∠DAC=∠CAB,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB=90°,∴AB=,∴AD=.故答案为.【点睛】此题考查相似形综合题目,相似三角形的判定与性质,三角形内角和定理,勾股定理,新定义四边形,熟练掌握新定义四边形,证明三角形相似是解决问题的关键.24、(1)见解析;(2)AE⊥BF,理由见解析.【解析】
(1)根据平行四边形的性质可得AD∥BC,AD=BC,然后利用AAS即可证出BC=DF,从而得出AD=DF,即可证出结论;(2)根据全等三角形的性质可得BE=EF,然后证出AB=AF,利用三线合一即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CBE=∠F,∵点E为CD的中点,∴CE=DE,在△BCE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年现代教育技术专业考试试卷及答案
- 2025年人工智能技术与应用考试试卷及答案
- 2025年人力资源管理师考试卷及答案
- 2025年辩论技巧与公共演讲考试试题及答案
- 2025年电子商务运营管理职业资格考试卷及答案
- 2025年情境领导理论知识考试题目及答案
- 七级数学期末测试题及答案
- 装卸合作协议书合同
- 2025年红外线气体分析仪合作协议书
- 2025年麻醉临床信息系统项目发展计划
- 麻家梁煤矿8.0Mt-a新井设计- 厚煤层富水顶板控水开采技术
- 铁路防胀知识培训
- 2025年浙江湖州市城市投资发展集团有限公司招聘笔试参考题库附带答案详解
- 2025年高空车作业考试题及答案
- 非遗文化产业发展-深度研究
- 2024年认证行业法律法规及认证基础知识答案
- (一模)2025年深圳市高三年级第一次调研考试 英语试卷(含标准答案)
- 越南投资环境评价与重点投资区域研究
- 神经内科紧急护理人力资源调配演练记录
- 丙酸铬、淀粉酶对黄羽肉鸡生长性能、抗氧化和肠道健康的影响
- 光伏发电新能源课件
评论
0/150
提交评论