2025届江西省赣州市八下数学期末质量跟踪监视模拟试题含解析_第1页
2025届江西省赣州市八下数学期末质量跟踪监视模拟试题含解析_第2页
2025届江西省赣州市八下数学期末质量跟踪监视模拟试题含解析_第3页
2025届江西省赣州市八下数学期末质量跟踪监视模拟试题含解析_第4页
2025届江西省赣州市八下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省赣州市八下数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若一次函数的图象上有两点,则下列大小关系正确的是()A. B. C. D.2.下列各式错误的是()A. B. C. D.3.若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.04.如图,在,,,,点P为斜边上一动点,过点P作于点,于点,连结,则线段的最小值为()A.1.2 B.2.4 C.2.5 D.4.85.一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→B B.B→C C.C→D D.D→A6.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x< B. C. D.7.若是最简二次根式,则的值可能是()A.-2 B.2 C. D.88.如图,直线的解析式为,直线的解析式为,则不等式的解集是()A. B. C. D.9.如图,将半径为的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm10.下列几红数中,是勾股数的有().①5、12、13;②13、14、15;③3k、4k、5k(k为正整数);④、2、.A.1组 B.2组 C.3组 D.4组二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.12.定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.13.外角和与内角和相等的平面多边形是_______________.14.关于的方程有两个整数根,则整数____________.15.如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF=_______.16.一次函数的图象不经过__________象限17.确定一个的值为________,使一元二次方程无实数根.18.若正多边形的一个内角等于,则这个多边形的边数是__________.三、解答题(共66分)19.(10分)如图,△ABC全等于△DEF,点B,E,C,F在同一直线,连接AD,求证:四边形ABED是平行四边形.20.(6分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?21.(6分)已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.(1)试说明:∠EFD=(∠C﹣∠B);(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.22.(8分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.23.(8分)甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同.已知乙每分钟比甲多打20个字,求甲每分钟打多少个字24.(8分)如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.(1)求点D的坐标和的值;(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.图1图2图325.(10分)计算化简(1)(2)26.(10分)某公司对应聘者A,B进行面试,并按三个方面给应聘者打分,每方面满分20分,打分结果如下表:根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:1:3的比例确定两人的成绩,通过计算说明谁将被录用.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式可得此一次函数随着x的增大而减小因为根据-2<1,可得故选B.【点睛】本题主要考查一次函数的一次项系数的含义,这是必考点,必须熟练掌握.2、A【解析】

A、根据相反向量的和等于,可以判断A;B、根据的模等于0,可以判断B;C、根据交换律可以判断C;D、根据运算律可以判断D.【详解】解:A、,故A错误;B、||=0,故B正确;C、,故C正确;D、,故D正确.故选:A.【点睛】此题考查平面向量,解题关键在于运算法则3、C【解析】

分式的值为1,则分母不为1,分子为1.【详解】∵|x|﹣2=1,∴x=±2,当x=2时,x﹣2=1,分式无意义.当x=﹣2时,x﹣2≠1,∴当x=﹣2时分式的值是1.故选C.【点睛】分式是1的条件中特别需要注意的是分母不能是1,这是经常考查的知识点.4、D【解析】

连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】解:连接PC,

∵PE⊥AC,PF⊥BC,

∴∠PEC=∠PFC=∠C=90°,

∴四边形ECFP是矩形,

∴EF=PC,

∴当PC最小时,EF也最小,

即当CP⊥AB时,PC最小,

∵AC=1,BC=6,

∴AB=10,

∴PC的最小值为:

∴线段EF长的最小值为4.1.

故选:D.【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.5、A【解析】观察图2得:寻宝者与定位仪器之间的距离先越来越近,到达M后再越来越远,结合图1得:寻宝者的行进路线可能为A→B,故选A.点睛:本题主要考查了动点函数图像,根据图像获取信息是解决本题的关键.6、B【解析】

由三角形三条边的关系得1<x<5,由于该三角形是锐角三角形,再结合勾股定理求出由锐角三角形变为直角三角形的临界值.【详解】首先要能组成三角形,由三角形三条边的关系得1<x<5;下面求该三角形为直角三角形的边长情况(此为临界情况):当3为斜边时,由勾股定理,22+x2=32,解得x=.当x为斜边时,由勾股定理,22+32=x2,解得x=,综上可知,当<x<时,原三角形为锐角三角形.故选B.【点睛】本题考查了三角形三条边的关系和勾股定理,解题的是由勾股定理求出x的临界值,再结合三角形三条边的关系求出x的取值范围.7、B【解析】

直接利用最简二次根式的定义分析得出答案.【详解】∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中-1,,8都不合题意,∴a的值可能是1.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.8、D【解析】

由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.【详解】不等式对应的函数图象是直线在直线“下方”的那一部分,其对应的的取值范围,构成该不等式的解集.所以,解集应为,直线过这点,把代入易得,.故选:D.【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.9、A【解析】

连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,根据折叠的性质及垂径定理得到AE=BE,再根据勾股定理即可求解.【详解】如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,∵折叠后恰好经过圆心,∴OE=DE,∵半径为4,∴OE=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE==2∴AB=2AE=4故选A.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理的应用.10、B【解析】

勾股数是满足a2+b2=c2的三个正整数,据此进行判断即可.【详解】解:∵满足a2+b2=c2的三个正整数,称为勾股数,∴是勾股数的有①5、12、13;③3k、4k、5k(k为正整数).故选:B.【点睛】本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.二、填空题(每小题3分,共24分)11、2【解析】

先证△ADP≌△BAQ,得到AP=BQ,然后用t表示出AP与BQ,列出方程解出t即可.【详解】因为AQ⊥PD,所以∠BAQ+∠APD=90°又因为正方形性质可到∠APD+∠ADP=90°,∠PAD=∠B=90°,AB=AD,所以得到∠BAQ=∠ADP又因为∠PAD=∠B=90°,AB=AD所以△ADP≌△BAQ,得到AP=BQAP=2t,QC=t,BC=8-t所以2t=8-2t,解得t=2s故填2【点睛】本题考查全等三角形的性质与判定,解题关键在于证出三角形全等,得到对应边相等列出方程.12、【解析】

根据新定义列出不等式即可求解.【详解】依题意得-3x+5≤11解得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.13、四边形【解析】

设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.【详解】设此多边形是n边形,由题意得:解得故答案为:四边形.【点睛】本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.14、【解析】

先计算判别式得到∆=,根据方程有两个整数根确定∆必为完全平方数,由此得到整数k的值.【详解】由题意得∆=,∵方程有两个整数根,∴∆必为完全平方数,而k是整数,∴k-8=0,∴k=8,故答案为:8.【点睛】此题考查一元二次方程的根的判别式,完全平方公式,正确理解题意是解题的关键.15、【解析】

过点M作MH∥BC交CP于H,根据两直线平行,同位角相等可得∠MHP=∠BCP,两直线平行,内错角相等可得∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角边角”证明△NCF和△MHF全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,根据矩形的对边相等可得BC=AD=10,再利用勾股定理列式求出AP,然后求出PD,再次利用勾股定理列式计算即可求出CP,从而得解.【详解】如图,过点M作MH∥BC交CP于H,

则∠MHP=∠BCP,∠NCF=∠MHF,

∵BP=BC,

∴∠BCP=∠BPC,

∴∠BPC=∠MHP,

∴PM=MH,

∵PM=CN,

∴CN=MH,

∵ME⊥CP,

∴PE=EH,

在△NCF和△MHF中,

∴△NCF≌△MHF(AAS),

∴CF=FH,

∴EF=EH+FH=CP,

∵矩形ABCD中,AD=10,

∴BC=AD=10,

∴BP=BC=10,

在Rt△ABP中,AP===6,

∴PD=AD−AP=10−6=4,

在Rt△CPD中,CP===,

∴EF=CP=×=.

故答案为:.【点睛】本题考查等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质,解题的关键是掌握等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质.16、二【解析】

根据一次函数的图像即可求解.【详解】一次函数过一三四象限,故不经过第二象限.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.17、【解析】

根据方程无实数根求出b的取值范围,再确定b的值即可.【详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【点睛】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.18、十【解析】

根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由题意得(n−2)×180°=144°×n.解得n=10,故答案为:十.【点睛】本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.三、解答题(共66分)19、见解析【解析】

根据全等三角形的性质得到AB∥DE且AB=DE,即可证明四边形ABED是平行四边形.【详解】∵△ABC≌△DEF∴∠B=∠DEF,AB=DE∴AB∥DE.∴AB=DE,AB∥DE∴四边形ABED是平行四边形.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知全等三角形的性质及平行四边形的判定定理.20、(1)该商店3月份这种商品的售价是40元;(2)该商店4月份销售这种商品的利润是990元.【解析】

(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【详解】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21、(1)见详解;(2)成立,证明见详解.【解析】

(1)根据三角形内角和定理以及角平分线的定义得到∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;(2)根据(1)可以得到∠AEC=90°+(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.【详解】解:(1)∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵∠FEC=∠B+∠BAE,则∠FEC=∠B+90°﹣(∠B+∠C)=90°+(∠B﹣∠C),∵FD⊥EC,∴∠EFD=90°﹣∠FEC,则∠EFD=90°﹣[90°+(∠B﹣∠C)]=(∠C﹣∠B);(2)成立.证明:同(1)可证:∠AEC=90°+(∠B﹣∠C),∴∠DEF=∠AEC=90°+(∠B﹣∠C),∴∠EFD=90°﹣[90°+(∠B﹣∠C)]=(∠C﹣∠B).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.22、DE=BF,DE∥BF.【解析】

由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.【详解】解:DE∥BF

DE=BF.理由如下:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠ACB,且AE=CF,AD=BC,∴△ADE≌△CBF(SAS),∴DE=BF,∠AED=∠BFC,∴∠DEC=∠AFB,∴DE∥BF.∴DE=BF,DE∥BF.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.23、60【解析】

设甲每分钟打x个字,根据“甲打1800字的时间与乙打2400字的时间相同”列出方程,解方程即可求解.【详解】解:设甲每分钟打x个字.根据题意,得.解得.经检验,是原方程的解,且符合题意.答:甲打字的速度是每分钟60个字。【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).【解析】

(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;(3)先作出图形,再根据矩形的性质即可求解.【详解】解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),∴点D的坐标为(2,−2),∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,∵点G是对角线AC的中点,∴S四边形BEFC=S▱AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论