2025届山东省菏泽市定陶区实验中学八年级数学第二学期期末经典模拟试题含解析_第1页
2025届山东省菏泽市定陶区实验中学八年级数学第二学期期末经典模拟试题含解析_第2页
2025届山东省菏泽市定陶区实验中学八年级数学第二学期期末经典模拟试题含解析_第3页
2025届山东省菏泽市定陶区实验中学八年级数学第二学期期末经典模拟试题含解析_第4页
2025届山东省菏泽市定陶区实验中学八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省菏泽市定陶区实验中学八年级数学第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是().A. B.C. D.2.如图,已知,点D、E、F分别是、、的中点,下列表示不正确的是()A. B. C. D.3.如图,在一个高为6米,长为10米的楼梯表面铺地毯,则地毯长度至少是()A.6米 B.10米 C.14米 D.16米4.下列说法正确的是()A.同位角相等B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系C.三角形的三条高线一定交于三角形内部同一点D.三角形三条角平分线的交点到三角形三边的距离相等5.已知,为实数,且,,设,,则,的大小关系是().A. B. C. D.无法确定6.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.167.如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为()

A.15° B.22.5° C.30° D.45°8.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,则BG的长为()A.5 B.4 C.3 D.29.某县第一中学学校管理严格、教师教学严谨、学生求学谦虚,三年来中考数学A等级共728人.其中2016年中考的数学A等级人数是200人,2017年、2018年两年中考数学A等级人数的增长率恰好相同,设这个增长率为x,根据题意列方程,得()A. B. C. D.10.以下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.1,, B.3,5,4C.1,1,2 D.6,8,10二、填空题(每小题3分,共24分)11.已知一次函数的图象经过点,则m=____________12.如图,AD是△ABC的角平分线,若AB=8,AC=6,则=_____.13.如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.14.若关于x的分式方程的解为非负数,则a的取值范围是_____.15.若分式的值为0,则x的值是_____.16.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.17.如图,将矩形ABCD沿直线BD折叠,使C点落在C′处,BC′交边AD于点E,若∠ADC′=40°,则∠ABD的度数是_____.18.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.三、解答题(共66分)19.(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)谁先出发早多长时间谁先到达B地早多长时间?(2)两人在途中的速度分别是多少?(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).20.(6分)在图1,图2中,点E是矩形ABCD边AD上的中点,请用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法)(1)在图1中,以BC为一边画△PBC,使△PBC的面积等于矩形ABCD的面积.(2)在图2中,以BE、ED为邻边画▱BEDK.21.(6分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.22.(8分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.23.(8分)解方程:x2﹣6x+8=1.24.(8分)阅读下列一段文字,然后回答下列问题.已知在平面内有两点、,其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为或.(1)已知、,试求A、B两点间的距离______.已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为______;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标及的最短长度.25.(10分)化简分式(a2-3aa2-6a+9+23-a)÷26.(10分)知识再现:如果,,则线段的中点坐标为;对于两个一次函数和,若两个一次函数图象平行,则且;若两个一次函数图象垂直,则.提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.在平面直角坐标系中,已知点,.(1)如图1,把直线向右平移使它经过点,如果平移后的直线交轴于点,交x轴于点,请确定直线的解析式.(2)如图2,连接,求的长.(3)已知点是直线上一个动点,以为对角线的四边形是平行四边形,当取最小值时,请在图3中画出满足条件的,并直接写出此时点坐标.

参考答案一、选择题(每小题3分,共30分)1、D【解析】首先求出平均数再进行吧比较,然后再根据法方差的公式计算.=,=,=,=所以=,<.故选A.“点睛”此题主要考查了平均数和方差的求法,正确记忆方差公式是解决问题的关键.2、A【解析】

根据中位线的性质可得DB=EF=AD,且DB∥EF,DE=BF,且DF∥BF,再结合向量的计算规则,分别判断各选项即可.【详解】∵点D、E、F分别是AB、AC、BC的中点∴FE∥BD,且EF=DB=AD同理,DE∥BF,且DE=BFA中,∵未告知AC=AB,∴、无大小关系,且方向也不同,错误;B中,∥,正确;C中,DB=EF,且与方向相反,∴,正确;D中,,正确故选:A【点睛】本题考查中位线定理和向量的简单计算,解题关键是利用中位线定理,得出各边之间的大小和位置关系.3、C【解析】

当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=10∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是8+6=14米.故选:C.【点睛】本题考查了勾股定理的应用,与实际生活相联系,加深了学生学习数学的积极性.4、D【解析】

利用平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质分别判断后即可确定正确的选项.【详解】A、两直线平行,同位角相等,故错误;B、同一平面内的两条不重合的直线有相交、平行两种位置关系,故错误;C、钝角三角形的三条高线的交点位于三角形的外部,故错误;D、三角形三条角平分线的交点到三角形三边的距离相等,正确,故选:D.【点睛】本题考查了平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质等知识,属于基础性的定义及定理,比较简单.5、C【解析】

对M、N分别求解计算,进行异分母分式加减,然后把ab=1代入计算后直接选取答案【详解】解:∵,∴∵,∴∴M=N故选C【点睛】本题考查分式的加减法,熟练掌握分式的运算为解题关键6、C【解析】试题解析:7、B【解析】

根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.【详解】∵四边形ABCD是矩形,AE⊥BD,

∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,

∴∠BAE=∠ADE

∵矩形对角线相等且互相平分,

∴∠OAB=∠OBA=,

∴∠BAE=∠ADE=90﹣67.5°=22.5°,

故选B.【点睛】本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.8、B【解析】分析:利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;详解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12-x,GE=x+6,∵GE2=CG2+CE2,∴(x+6)2=(12-x)2+62,解得:x=1,∴BG=1.故选B.点睛:此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.9、B【解析】

用增长率x分别表示出2017年和2018年中考数学A等级的人数,再根据三年来中考数学A等级共728人即可列出方程.【详解】解:2017年和2018年中考数学A等级的人数分别为:、,根据题意,得:.故选:B.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题关键.10、C【解析】

根据勾股定理的逆定理对四个答案进行逐一判断即可,【详解】解:A、∵,∴能构成直角三角形;B..∵,∴能构成直角三角形;C..:∵,∴不能构成直角三角形;D.:∵,∴能构成直角三角形.故选:C.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.二、填空题(每小题3分,共24分)11、1【解析】

把(m,6)代入y=2x+4中,得到关于m的方程,解方程即可.【详解】解:把(m,6)代入y=2x+4中,得

6=2m+4,解得m=1.

故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.12、4:3【解析】作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF,===.故答案为4∶3.点睛:本题关键在于利用角平分线的性质得出两个三角形的高相等,将两个三角形面积之比转化为对应的底之比.13、1【解析】试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=2,b=2,故a-b=1.【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、且【解析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.15、-2【解析】

根据分子等于零且分母不等于零列式求解即可.【详解】解:由分式的值为2,得x+2=2且x﹣2≠2.解得x=﹣2,故答案为:﹣2.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.16、1【解析】

画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周长为1cm.

故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.17、65°【解析】

直接利用翻折变换的性质得出∠2=∠3=25°,进而得出答案.【详解】解:由题意可得:∠A=∠C′=90°,∠AEB=∠C′ED,故∠1=∠ADC′=40°,则∠2+∠3=50°,∵将矩形ABCD沿直线BD折叠,使C点落在C′处,∴∠2=∠3=25°,∴∠ABD的度数是:∠1+∠2=65°,故答案为65°.【点睛】本题考查了矩形的性质、翻折变换的性质,正确得出∠2=∠3=25°是解题关键.18、1【解析】

根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.【详解】解:∵P,Q分别为AB,AC的中点,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四边形PBCQ=S△ABC﹣S△APQ=1,故答案为1.【点睛】本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)y甲=10x,y乙=40x﹣1.【解析】

(1)结合图象,依据点的坐标代表的意思,即可得出结论;(2)由速度=路程÷时间,即可得出结论;

(3)根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式.【详解】解:(1)结合图象可知,甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲的速度:80÷8=10km/h,乙的速度:80÷(5-3)=40km/h.(3)设y甲=kx,由图知:8k=80,k=10∴y甲=10x;设y乙=mx+n,由图知:解得∴y乙=40x﹣1答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:y甲=10x,y乙=40x﹣1.【点睛】本题考查了一次函数中的相遇问题、用待定系数法求函数表达式,解题的关键是:(1)明白坐标系里点的坐标代表的意义;(2)知道速度=路程÷时间;(3)会用待定系数法求函数表达式.本题难度不大,属于基础题,做此类问题是,结合函数图象,找出点的坐标才能做对题.20、(1)详见解析;(2)详见解析【解析】

(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到平行四边形BEDK.【详解】解:(1)图1中△PBC为所画;(2)图2中▱BEDK为所画.【点睛】本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形。21、(1)k=11,B(2,1);(1)D1(3,1)或D1(3,2)或D3(3,-1).【解析】

(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=2代入反比例函数解析式求得相应的y的值,即得点B的坐标;(1)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【详解】(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=11,故该反比例函数解析式为:y=.∵点C(2,0),BC⊥x轴,∴把x=2代入反比例函数y=,得y==1.则B(2,1).综上所述,k的值是11,B点的坐标是(2,1).(1)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(2,1)、C(2,0),∴点D的横坐标为3,yA-yD=yB-yC即4-yD=1-0,故yD=1.所以D(3,1).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(2,1)、C(2,0),∴点D的横坐标为3,yD′-yA=yB-yC即yD-4=1-0,故yD′=2.所以D′(3,2).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(2,1)、C(2,0),∴xD″-xB=xC-xA即xD″-2=2-3,故xD″=3.yD″-yB=yC-yA即yD″-1=0-4,故yD″=-1.所以D″(3,-1).综上所述,符合条件的点D的坐标是:(3,1)或(3,2)或(3,-1).【点睛】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(1)题时,采用了“数形结合”和“分类讨论”的数学思想.22、(1)y=2x;(2);(3)点M的坐标为(,0).【解析】

(1)先求出点A的坐标,然后设直线AO的解析式为y=kx,用待定系数法求解即可;(2)由面积法求出BD的长,从而求出点D的坐标,然后带入y=-x+b求解即可;(3)先求出点C的坐标,作点C关于x轴的对称点E,此时M到A、C的距离之和最小,求出直线AE的解析式,即可求出点M的坐标.【详解】(1)OB=4,AB=8,∠ABO=90°,∴A点坐标为(4,8),设直线AO的解析式为y=kx,则4k=8,解得k=2,即直线AO的解析式为y=2x;(2)OB=4,∠ABO=90°,=4,∴DB=2,∴D点的坐标为(4,2),把D(4,2)代入得:=6,∴直线CD的解析式为;(3)由直线与直线组成方程组为,解得:,∴点C的坐标为(2,4)如图,设点M使得MC+MA最小,作点C关于x轴的对称点E,可得点E的坐标为(2,-4),连结MC、ME、AE,可知MC=ME,所以M到A、C的距离之和MA+MC=MA+ME,又MA+ME大于等于AE,所以当MA+ME=AE时,M到A、C的距离之和最小,此时A、M、E成一条直线,M点是直线AE与在x轴的交点.所以设直线AE的解析式为,把A(4,8)和E(2,-4)代入得:,解得:,所以直线AE的解析式为,令得,所以点M的坐标为(,0).【点睛】本题考查了待定系数法求函数解析式,一次函数的交点等面积法求线段的长及轴对称最短问题,熟练掌握待定系数法是解答本题的关键.23、x1=2x2=2.【解析】

应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.24、(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P的坐标为()时,PD+PF的长度最短,最短长度为.【解析】

(1)根据阅读材料中A和B的坐标,利用两点间的距离公式即可得出答案;由于M、N在平行于y轴的直线上,根据M和N的纵坐标利用公式即可求出MN的距离;(2)由三个顶点的坐标分别求出DE,DF,EF的长,即可判定此三角形的形状;(3)作F关于x轴的对称点,连接,与x轴交于点P,此时最短,最短距离为,P的坐标即为直线与x轴的交点.【详解】解:(1)∵、∴故A、B两点间的距离为:13.∵M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1∴故M、N两点的距离为5.(2)∵、、∴∴DE=DF,∴△DEF为等腰直角三角形(3)作F关于x轴的对称点,连接,与x轴交于点P,此时DP+PF最短设直线的解析式为y=kx+b将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论