2025届江苏省镇江市丹徒区宜城中学数学八下期末检测模拟试题含解析_第1页
2025届江苏省镇江市丹徒区宜城中学数学八下期末检测模拟试题含解析_第2页
2025届江苏省镇江市丹徒区宜城中学数学八下期末检测模拟试题含解析_第3页
2025届江苏省镇江市丹徒区宜城中学数学八下期末检测模拟试题含解析_第4页
2025届江苏省镇江市丹徒区宜城中学数学八下期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省镇江市丹徒区宜城中学数学八下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.把一元二次方程x2-4x-1=0配方后,下列变形正确的是(A.(x-2)2=5 B.(x-2)2=32.在一个不透明的盒子里装有2个红球和1个黄球,每个球除颜色外都相同,从中任意摸出2个球。下列事件中,不可能事件是()A.摸出的2个球都是红球B.摸出的2个球都是黄球C.摸出的2个球中有一个是红球D.摸出的2个球中有一个是黄球3.如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为()A.20 B.21 C.14 D.74.若分式方程=2+的解为正数,则a的取值范围是()A.a>4 B.a<4 C.a<4且a≠2 D.a<2且a≠05.如图,以正方形的顶点为直角顶点,作等腰直角三角形,连接、,当、、三点在--条直线上时,若,,则正方形的面积是()A. B. C. D.6.下列二次根式是最简二次根式的是()A.B.C.D.7.小宇同学投擦10次实心球的成绩如表所示:成绩(m)11.811.91212.112.2频数22231由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m8.若式子在实数范围内有意义,则x的取值范围是(

)A.x≥ B.x> C.x≥ D.x>9.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁10.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(

)A.4 B.3 C.2 D.11.如图,平行四边形的对角线,相交于点,,,,则的周长是()A.7.5 B.12 C.6 D.无法确定12.已知一次函数y=ax+b(a、b为常数且a≠0)的图象经过点(1,3)和(0,-2),则a-b的值为()A.-1 B.-3 C.3 D.7二、填空题(每题4分,共24分)13.函数自变量的取值范围是_________________.14.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.15.已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____16.不等式1﹣2x≥3的解是_____.17.在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.18.如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.三、解答题(共78分)19.(8分)先化简,再求值:,其中x=-1.20.(8分)已知,求代数式的值。21.(8分)如图,已知△ABC中,DE∥BC,S△ADE︰S四边形BCED=1︰2,,试求DE的长.22.(10分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①;②;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.23.(10分)如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点(1)求该反比例函数的表达式;(2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.①求的值;②判断与的位置关系,并说明理由;(3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.24.(10分)某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,请回答:(1)写出售价为50元时,每天能卖樱桃_____千克,每天获得利润_____元.(2)若该专卖店销售这种樱桃要想平均每天获利2240元,每千克樱桃应降价多少元?(3)若该专卖店销售这种樱桃要想平均每天获利最大,每千克樱桃应售价多少元?25.(12分)如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.(1)证明:∠ABE=∠ACF;

(2)判断EF与MN的位置关系,并证明你的结论;(3)求MN的长.26.学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为县级先进班集体,下表是三个班的五项素质考评得分表。五项素质考评得分表(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10106107乙班108898丙班910969根据统计表中的信息回答下列问题:(1)请你补全五项成绩考评分析表中的数据:班级平均分众数中位数甲班8.610③乙班8.6②8丙班①99(2)参照上表中的数据,你推荐哪个班为县级先进班集体?并说明理由。(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3∶2∶1∶1∶3的比确定班级的综合成绩,学生处的李老师根据这个综合成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,按照这个成绩,应推荐哪个班为县级先进班集体?为什么?

参考答案一、选择题(每题4分,共48分)1、A【解析】

先把-1移到右边,然后两边都加4,再把左边写成完全平方的形式即可.【详解】∵x2∴x2∴x2∴(x-2)2故选A.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.2、B【解析】

直接利用小球个数进而得出不可能事件.【详解】解:在一个不透明的盒子里装有2个红球和1个黄球,每个球外颜色都相同,从中任意摸出两个球,下列事件中,不可能事件是摸出的2个黄球.

故选:B.【点睛】此题主要考查了随机事件,正确把握随机事件、不可能事件的定义是解题关键.3、C【解析】

分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.【详解】解:当点E在AB段运动时,y=BC×BE=BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选:C.【点睛】本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.4、C【解析】试题分析:去分母得:x=1x﹣4+a,解得:x=4﹣a,根据题意得:4﹣a>0,且4﹣a≠1,解得:a<4且a≠1.故选C.考点:分式方程的解.5、C【解析】

由“ASA”可证△ABF≌△CBE,可得AF=CE=3,由等腰直角三角形的性质可得BH=FH=1,由勾股定理可求BC2=5,即可求正方形ABCD的面积【详解】解:∵四边形ABCD是正方形,△BEF是等腰直角三角形∴AB=BC,BE=BF,∠ABC=∠EBF=90°,∴∠ABF=∠EBC,且AB=BC,BE=BF∴△ABF≌△CBE(SAS)∴AF=CE=3如图,过点BH⊥EC于H,∵BE=BF=,BH⊥EC∴BH=FH=1∴CH=EC-EH=2∵BC2=BH2+CH2=5,∴正方形ABCD的面积=5.故选择:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证明△ABF≌△CBE是本题的关键.6、C【解析】A选项的被开方数中含有分母;B、D选项的被开方数中含有未开尽方的因数;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是C.解:A、=;B、=2;D、=2;因此这三个选项都不是最简二次根式,故选C.7、D【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、A【解析】

根据:二次根式的被开方数必须大于或等于0,才有意义.【详解】若式子在实数范围内有意义,则2x-3≥0,即x≥.故选A【点睛】本题考核知识点:二次根式有意义问题.解题关键点:熟记二次根式有意义条件.9、A【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:首先比较平均数:甲=丙>乙=丁,

∴从甲和丙中选择一人参加比赛,

再比较方差:丙>甲

∴选择甲参赛,

所以A选项是正确的.【点睛】本题考查的是方差,熟练掌握方差的性质是解题的关键.10、B【解析】

首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.11、A【解析】

根据平行四边形的性质可得AO=,DO=,AD=BC=3,然后根据三角形的周长公式计算即可.【详解】解:∵四边形ABCD是平行四边形,,,,∴AO=,DO=,AD=BC=3∴△AOD的周长为AO+DO+AD=故选A.【点睛】此题考查的是平行四边形的性质,掌握平行四边形的性质是解决此题的关键.12、D【解析】将点(0,-2)代入该一次函数的解析式,得,即b=-2.将点(1,3)代入该一次函数的解析式,得,∵b=-2,∴a=5.∴a-b=5-(-2)=7.故本题应选D.二、填空题(每题4分,共24分)13、【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:2x+1>0,解得:.

故答案为:.【点睛】函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.14、4.【解析】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为4.考点:菱形的性质;线段垂直平分线的性质.15、(-0.4,0)【解析】

点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标.【详解】解:点A(-2,2)关于x轴对称的点A'(-2,-2),

设直线A'B的解析式为y=kx+b,

把A'(-2,-2),B(2,3)代入,可得

,解得,

∴直线A'B的解析式为y=x+,

令y=0,则0=x+,

解得x=-0.4,

∴点P的坐标为(-0.4,0),

故答案为:(-0.4,0).【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16、x≤﹣1.【解析】

根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】∵﹣2x≥3﹣1,∴﹣2x≥2,则x≤﹣1,故答案为:x≤﹣1.【点睛】此题考查解一元一次不等式,难度不大17、2【解析】

根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.【详解】作点E′和E关于BD对称.则连接AE′交BD于点P,

∵四边形ABCD是菱形,AB=4,E为AD中点,

∴点E′是CD的中点,

∴DE′=DC=×4=2,AE′⊥DC,

∴AE′=.

故答案为2.【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.18、2【解析】

根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.【详解】解:∵四边形AFCE是正方形,∴AE=EC,∠E=90°,△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,∴△ABF≌△ADE,∴正方形AFCE的面积=四边形ABCD的面积=18cm1.∴AE=CE==,∴AC=AE=2cm.故答案为:2.【点睛】本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.三、解答题(共78分)19、,【解析】

先根据分式的运算进行化简,再代入x即可求解.【详解】===把x=-1代入原式==.20、【解析】

把x的值直接代入,再根据乘法公式进行计算即可.【详解】解:当时,【点睛】此题主要考查整式的运算,解题的关键是熟知整式的运算公式.21、【解析】解:因为DE∥BC,所以△ADE∽△ABC,所以.又S△ADE︰S四边形BCED=1︰2,所以S△ADE︰S△ABC=1︰3,即.而,所以.22、(1)①见解析;②见解析;(2)【解析】

(1)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,可知①∠BAE=∠DAF是否成立;可知②DN⊥AE是否成立;(2)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,求出​∠EAC与∠ADN的和的度数.【详解】(1)证明:①在正方形ABCD中,∴,.∵,∴.∴.∴.②∵M是AF的中点,∴,由①可知.∵.∵∴∴(2)解:延长AD至H,使得,连结FH,CH.∵,∴.在正方形ABCD屮,AC是对角线,∴.∴.∴.∴又∵,∴.∴∵M是AF的中点,D是AH的中点,∴.∴∴【点睛】本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质的应用,解题的关键是熟练掌握正方形的性质,全等三角形的判定,全等三角形的性质的计算.23、(1);(2)①;②;(3).【解析】

(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;

(2)①先求出点B坐标即可得出结论;②利用勾股定理的逆定理即可判断;

(3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.【详解】解:(1)∵点在直线,∴,∴,∴点,∵点在反比例函数上,∴,∴;(2)①作轴于,轴于.∴,∵,∴,∴,∴,∴,∴,∴,∴设的解析式为,∵经过点,∴.∴直线的解析式为,∴.②∵,,∴,,,∴,∴,∴.(3)如图∵,,由(2)知,,即,∴,∵,∴,过点作轴于∵,∴,,在中,∴,∴过点作轴于,在中,,,∴,,∴.【点睛】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数的意义,相似三角形的性质,含30°角的直角三角形的性质,解(1)的关键是求出点A的坐标,解(2)的关键是求出点B的坐标,解(3)的关键是求出OP,是一道中等难度的中考常考题.24、2002000(2)4元或6元(3)当销售单价为55元时,可获得销售利润最大【解析】试题分析:(1)根据每天能卖出樱桃=100+10×(60﹣10)计算即可得到每天卖的樱桃,根据利润=单价×数量计算出每天获得利润;(2)设每千克樱桃应降价x元,根据每千克的利润×数量=2240元,列方程求解;(3)设每千克樱桃应降价x元,根据利润y=每千克的利润×数量,列出函数关系式,利用配方法化成顶点式即可求出答案.解:(1)售价为50元时,每天能卖出樱桃100+10×(60﹣10)=200千克,每天获得利润(50﹣40)×200=2000元,故答案为200、2000;(2)设每千克樱桃应降价x元,根据题意得:(60﹣40﹣x)(100+10x)=2240,整理得:x2﹣10x+24=0,x=4或x=6,答:每千克核桃应降价4元或6元;(3)设降价为x元,利润y=(60﹣40﹣x)(100+10x)=﹣10x2+100x+2000=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∴当x=5时,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论