




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省大庆市第五十五中学八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,四边形是平行四边形,要使它变成菱形,需要添加的条件是()A.AC=BD B.AD=BC C.AB=BC D.AB=CD2.已知三条线段的长分别为1.5,2,3,则下列线段中,不能与它们组成比例线段的是()A.l B.2.25 C.4 D.23.如图,在平面直角坐标系中,若点在直线与轴正半轴、轴正半轴围成的三角形内部,则的值可能是()A.-3 B.3 C.4 D.54.下列各式成立的是()A.=2 B.=-5 C.=x D.=±65.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定6.若一次函数y=m-1x-3的图象经过第二、三、四象限,则A.m>0 B.m<0 C.m>1 D.m<17.下列运算正确的是()A.= B.=a+1 C.+=0 D.﹣=8.在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.将一张矩形纸片沿一组对边和的中点连线对折,对折后所得矩形恰好与原矩形相似,若原矩形纸片的边,则的长为()A. B. C. D.210.下列图案是我国几大银行的标志,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.11.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A.平均数 B.众数 C.方差 D.标准差12.下列美丽的图案,不是中心对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.14.在直角梯形中,,如果,,,那么对角线__________.15.二次根式的值是________.16.如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.17.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.18.因式分解:______.三、解答题(共78分)19.(8分)某学校计划在总费用元的限额内,租用汽车送名学生和名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)根据题干所提供的信息,确定共需租用多少辆汽车?(2)请你给学校选择一种最节省费用的租车方案.20.(8分)化简求值:(1+)÷,其中x=﹣1.21.(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.22.(10分)解不等式组:,并写出所有整数解.23.(10分)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y(k<0,x<0)的图象上,点P(m,n)是函数y(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S1,求S1;(1)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S1.写出S1与m的函数关系式,并标明m的取值范围.24.(10分)解不等式组:25.(12分)解一元二次方程:(1)6x2﹣x﹣2=0(2)(x+3)(x﹣3)=326.如图,等边的边长是4,,分别为,的中点,延长至点,使,连接和.(1)求证:;(2)求的长;(3)求四边形的面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据菱形的判定:一组邻边相等的平行四边形是菱形可得答案.【详解】A.
添加AC=BD可证明平行四边形ABCD是矩形,不能使它变成菱形,故此选项错误;
B.
添加AD=BC不能证明平行四边形ABCD是菱形,故此选项错误;
C.
添加AB=BC可证明平行四边形ABCD是菱形,故此选项正确;
D.
添加AB=CD不能可证明平行四边形ABCD是变成菱形,故此选项错误;
故选:C.【点睛】本题考查的是菱形,熟练掌握菱形的性质是解题的关键.2、D【解析】
对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如
ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.据此求解可得.【详解】解:A.由1×3=1.5×2知1与1.5,2,3组成比例线段,此选项不符合题意;B.由1.5×3=2.25×2知2.25与1.5,2,3组成比例线段,此选项不符合题意;C.由1.5×4=3×2知4与1.5,2,3组成比例线段,此选项不符合题意;D.由1.5×3≠2×2知2与1.5,2,3不能组成比例线段,此选项符合题意;故选:D【点睛】本题主要考查了成比例线段的关系,判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.3、D【解析】
先根据点4(2.,3)在直线与x轴正半轴、y轴正半轴围成的三角形内部,可知点A(2,3)在直线的下方,即当x=2时,y>3,再将x=2代入,从而得出-1+b>3,即b>4.【详解】解:∵点A(2.3)在直线与x轴正半轴、y轴正半轴围成的三角形内部。∴点A(2,3)在直线的下方,即当x=2时,y>3,又∵当x=2时,∴-1+b>3,即b>4.故选:D.【点睛】本题主要考查了一次函数的性质,根据点A(2.3)在直线与x轴正半轴、y轴正半轴围成的三角形内部,得到点A(2.3)在直线的下方是解题的关键.4、A【解析】分析:根据算术平方根的定义判断即可.详解:A.,正确;B.,错误;C.,错误;D.,错误.故选A.点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.5、A【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析容易题.失分原因是方差的意义掌握不牢.
6、D【解析】
根据一次函数的性质即可求出m的取值范围.【详解】∵一次函数的图象经过第二、三、四象限,∴m-1<0∴m<1.故选:D【点睛】本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.7、C【解析】
根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.【详解】A.=,故错误;B.=a+,故错误;C.+=-=0,故正确;D.﹣=,故错误;故选C【点睛】本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.8、C【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A.不是轴对称图形,是中心对称图形,不合题意;B.是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,也是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,不合题意,故选C.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解析】
根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得.【详解】解:根据条件可知:矩形AEFB∽矩形ABCD,∴,设AD=BC=x,AB=1,则AE=x.则,即:x2=1.∴x=或﹣(舍去).故选:C.【点睛】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.10、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形又是中心对称图形,故本选项不符合题意;
B、是轴对称图形,不是中心对称图形,故本选项不符合题意;
C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
D、不是轴对称图形,是中心对称图形,故本选项符合题意.
故选:D.【点睛】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.12、B【解析】
解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,故选B.【点睛】本题考查中心对称图形,正确识图是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.14、【解析】
过点D作交BC于点E,首先证明四边形ABED是矩形,则,进而求出EC的长度,然后在含30°的直角三角形中求出DE的长度,最后利用勾股定理即可求出BD的长度.【详解】过点D作交BC于点E,∵,,.,,∴四边形ABED是矩形,,.,,,,.故答案为:.【点睛】本题主要考查矩形的判定及性质,含30°的直角三角形的性质和勾股定理,掌握矩形的判定及性质,含30°的直角三角形的性质和勾股定理是解题的关键.15、1【解析】
根据二次根式的性质进行化简即可得解.【详解】=|-1|=1.故答案为:-1.【点睛】此题主要考查了二次根式的化简,注意:.16、【解析】本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.解:已知山坡AC的坡度i=1:0.5,∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,∴=tan30°,即=,解得:x=,∴CB=2x=,故答案为.17、5或【解析】
利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.【详解】当这个直角三角形的两直角边分别为、时,则该三角形的斜边的长为:(),当这个直角三角形的一条直角边为,斜边为时,则该三角形的另一条直角边的长为:().故答案为或.【点睛】此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.18、【解析】
首先把公因式3提出来,然后按照完全平方公式因式分解即可.【详解】解:==故答案为:.【点睛】此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.三、解答题(共78分)19、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车辆,乙种客车辆.【解析】
(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有名教师.(2)根据题意设租用甲种客车辆,共需费用元,则租用乙种客车辆,因此可列出方程,再利用不等式列出不等式组,即可解得x的范围,在分类计算费用,选择较便宜的.【详解】解:(1)由使名学生和名教师都有座位,租用汽车辆数必需不小于辆;每辆汽车上至少要有名教师,租用汽车辆数必需不大于6辆.所以,根据题干所提供的信息,确定共需租用6辆汽车.(2)设租用甲种客车辆,共需费用元,则租用乙种客车辆.6辆汽车载客人数为人=∴解得∴,或当时,甲种客车辆,乙种客车辆,当时,甲种客车辆,乙种客车辆,∴最节省费用的租车方案是租用甲种客车辆,乙种客车辆.【点睛】本题主要考查不等式组的应用问题,关键在于根据题意设出合理的未知数,特别注意,要取整数解,确定利润最小.20、,-2.【解析】
根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(1+)÷,==,当x=﹣1时,原式==﹣2.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.21、(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.考点:作图—应用与设计作图.22、1,2,3,4,5,6【解析】
根据不等式的性质依次求出各不等式的解集,再求出公共解集,即可求解.【详解】解解不等式①得x≥1,解不等式②得x<故不等式组的解集为1≤x<故整数解为1,2,3,4,5,6【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的性质.23、(1);(1).【解析】
(1)根据正方形的面积求出点B的坐标,进而可求出函数解析式,由点P在函数图象上即可求出结果;(1)由于点P与点B的位置关系不能确定,故分两种情况进行讨论计算即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CACEM 15.2-07-2020城市公共交通运营服务第7部分:评价与改进
- 艺术品市场数字化发展考核试卷
- 数据库基础知识试题及答案
- 管道工程绿色可持续发展模式考核试卷
- 信息系统监理师考试核心知识点试题及答案
- 金属工艺品的产业政策支持与挑战应对考核试卷
- 软件测试流程详尽解析试题及答案
- 行政组织理论的角色与功能分析及2025年试题及答案
- 精炼2025年行政组织理论考试有效试题及答案
- 嵌入式系统中的实时操作试题及答案
- 吉林省工程竣工验收报告
- 手外伤及断肢(指)再植(讲稿)
- 新版心肺复苏流程图
- DB32/T 4444-2023 单位消防安全管理规范-高清版
- 初三物理滑轮习题
- 东南大学医学三基考试外科选择题及答案
- (2.1.1)-第2章颚式破碎机
- GB/T 9724-2007化学试剂pH值测定通则
- 拓展训练项目孤岛求生游戏规则与分享参考范本
- DS6-K5B计算机联锁演示教学课件
- 2022年成都信息工程大学计算机科学与技术专业《操作系统》科目期末试卷A(有答案)
评论
0/150
提交评论