几何图形探究题_第1页
几何图形探究题_第2页
几何图形探究题_第3页
几何图形探究题_第4页
几何图形探究题_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE中考数学二轮复习:重难点题型突破课件与试题题型五几何图形探究题类型一几何图形静态探究1.(2017·成都)问题背景:如图①,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=eq\f(1,2)∠BAC=60°,于是eq\f(BC,AB)=eq\f(2BD,AB)=eq\r(3);迁移应用:如图②,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图③,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.2.(2017·许昌模拟)在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=eq\f(1,2)∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:eq\f(BF,PE)=__________,并结合图②证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求eq\f(BF,PE)的值.(用含α的式子表示)3.(2014·河南)(1)问题发现如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为__________;②线段AD,BE之间的数量关系为__________.(2)拓展探究如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD=eq\r(2),若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.4.(2017·长春改编)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=eq\f(1,2)BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,求阴影部分图形的面积.5.(2016·新乡模拟)问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),同时,点E由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点,求eq\f(AC,HF)的值.(1)初步尝试如图①,若△ABC是等边三角形,DH⊥AC,且D,E的运动速度相等,小王同学发现可以过点D做DG∥BC,交AC于点G,先证GH=AH.再证GF=CF,从而求得eq\f(AC,HF)的值为__________;(2)类比探究如图②,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是eq\r(3)∶1,求eq\f(AC,HF)的值;(3)延伸拓展如图③,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记eq\f(BC,AC)=m,且点D,E的运动速度相等,试用含m的代数式表示eq\f(AC,HF)的值(直接写出结果,不必写解答过程).类型二几何图形动态探究1.(2015·河南)如图①,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,eq\f(AE,BD)=__________;②当α=180°时,eq\f(AE,BD)=__________;(2)拓展探究试判断:当0°≤α<360°时,eq\f(AE,BD)的大小有无变化?请仅就图②的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图①,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是__________;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.3.(2013·河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DCE绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是__________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是__________;(2)猜想论证当△DEC绕点C旋转到图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想;(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长.4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB=α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.题型五第22题几何图形探究题类型一几何图形静态探究1.迁移应用:①证明:∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAB和△EAC中,eq\b\lc\{(\a\vs4\al\co1(DA=EA,∠DAB=∠EAC,AB=AC)),∴△DAB≌△EAC;,图②)②解:结论:CD=eq\r(3)AD+BD.理由:如解图①,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD·cos30°=eq\f(\r(3),2)AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=eq\r(3)AD+BD;拓展延伸:①证明:如解图②,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴eq\f(HF,BF)=cos30°,∴BF=eq\f(4.5,\f(\r(3),2))=3eq\r(3).2.(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,eq\b\lc\{(\a\vs4\al\co1(∠GBO=∠EPO,OB=OP,∠BOG=∠POE)),∴△BOG≌△POE(ASA);(2)解:猜想eq\f(BF,PE)=eq\f(1,2).证明:如解图①,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB,∴NB=NP.∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,eq\b\lc\{(\a\vs4\al\co1(∠MBN=∠NPE,NB=NP,∠MNB=∠PNE)),∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=eq\f(1,2)∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,eq\b\lc\{(\a\vs4\al\co1(∠BPF=∠MPE,PF=PF,∠PFB=∠PFM)),∴△BPF≌△MPF(ASA).∴BF=MF.即BF=eq\f(1,2)BM.∴BF=eq\f(1,2)PE.即eq\f(BF,PE)=eq\f(1,2);(3)解:如解图②,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.由(2)同理可得BF=eq\f(1,2)BM,∠MBN=∠EPN,∴△BMN∽△PEN,∴eq\f(BM,PE)=eq\f(BN,PN).在Rt△BNP中,tanα=eq\f(BN,PN),∴eq\f(BM,PE)=tanα,即eq\f(2BF,PE)=tanα,∴eq\f(BF,PE)=eq\f(tanα,2).3.解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,eq\b\lc\{(\a\vs4\al\co1(AC=BC,∠ACD=∠BCE,CD=CE)),∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;②∴AD=BE;(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,eq\b\lc\{(\a\vs4\al\co1(CA=CB,∠ACD=∠BCE,CD=CE)),∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM;(3)点A到BP的距离为eq\f(\r(3)-1,2)或eq\f(\r(3)+1,2).理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如解图①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=eq\r(2),∠BAD=90°.∴BD=2.∵DP=1,∴BP=eq\r(3).∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴eq\r(3)=2AH+1.∴AH=eq\f(\r(3)-1,2);②当点P在如解图②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,同理可得:BP=2AH-PD.∴eq\r(3)=2AH-1.∴AH=eq\f(\r(3)+1,2).综上所述:点A到BP的距离为eq\f(\r(3)-1,2)或eq\f(\r(3)+1,2).4.解:【探究】平行四边形.理由:如解图①,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=eq\f(1,2)AC,同理HG∥AC,HG=eq\f(1,2)AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=eq\f(1,2)AC,同【探究】的方法得,FG=eq\f(1,2)BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;(2)如解图②,由【探究】得,四边形EFGH是平行四边形,∵F,G是BC,CD的中点,∴FG∥BD,FG=eq\f(1,2)BD,∴△CFG∽△CBD,∴eq\f(S△CFG,S△BCD)=eq\f(1,4),∴S△BCD=4S△CFG,同理:S△ABD=4S△AEH,∵四边形ABCD面积为5,∴S△BCD+S△ABD=5,∴S△CFG+S△AEH=eq\f(5,4),同理:S△DHG+S△BEF=eq\f(5,4),∴S四边形EFGH=S四边形ABCD-(S△CFG+S△AEH+S△DHG+S△BEF)=5-eq\f(5,2)=eq\f(5,2),设AC与FG,EH相交于M,N,EF与BD相交于P,∵FG∥BD,FG=eq\f(1,2)BD,∴CM=OM=eq\f(1,2)OC,同理:AN=ON=eq\f(1,2)OA,∵OA=OC,∴OM=ON,易知,四边形ENOP,FMOP是平行四边形,S▱EPON=S▱FMOP,∴S阴影=eq\f(1,2)S四边形EFGH=eq\f(5,4).5.解:(1)∵△ABC是等边三角形,∴△AGD是等边三角形,∴AD=GD,由题意知:CE=AD,∴CE=GD,∵DG∥BC,∴∠GDF=∠CEF,在△GDF与△CEF中,eq\b\lc\{(\a\vs4\al\co1(∠GDF=∠CEF,∠GFD=∠EFC,,GD=CE))∴△GDF≌△CEF(AAS),∴CF=GF,∵DH⊥AG,∴AH=GH,∴AC=AG+CG=2GH+2GF=2(GH+GF)=2HF,∴eq\f(AC,HF)=2;(2)如解图①,过点D作DG∥BC交AC于点G,则∠ADG=∠ABC=90°.∵∠BAC=∠ADH=30°,∴AH=DH,∠GHD=∠BAC+∠ADH=60°,∠HDG=∠ADG-∠ADH=60°,∴△DGH为等边三角形.∴GD=GH=DH=AH,AD=GD·tan60°=eq\r(3)GD.由题意可知,AD=eq\r(3)CE.∴GD=CE.∵DG∥BC,∴∠GDF=∠CEF.在△GDF与△CEF中,eq\b\lc\{(\a\vs4\al\co1(∠GDF=∠CEF,∠GFD=∠EFC,CE=GD)),∴△GDF≌△CEF(AAS),∴GF=CF.GH+GF=AH+CF,即HF=AH+CF,∴HF=eq\f(1,2)AC,即eq\f(AC,HF)=2;(3)eq\f(AC,HF)=eq\f(m+1,m).理由如下:如解图②,过点D作DG∥BC交AC于点G,易得AD=AG,AD=EC,∠AGD=∠ACB.在△ABC中,∵∠BAC=∠ADH=36°,AB=AC,∴AH=DH,∠ACB=∠B=72°,∠GHD=∠HAD+∠ADH=72°.∴∠AGD=∠GHD=72°,∵∠GHD=∠B=∠HGD=∠ACB,∴△ABC∽△DGH.∴eq\f(GH,DH)=eq\f(BC,AC)=m,∴GH=mDH=mAH.由△ADG∽△ABC可得eq\f(DG,AD)=eq\f(BC,AB)=eq\f(BC,AC)=m.∵DG∥BC,∴eq\f(FG,FC)=eq\f(GD,EC)=m.∴FG=mFC.∴GH+FG=m(AH+FC)=m(AC-HF),即HF=m(AC-HF).∴eq\f(AC,HF)=eq\f(m+1,m).类型二几何图形动态探究1.解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=eq\r(AB2+BC2)=eq\r((8÷2)2+82)=4eq\r(5),∵点D、E分别是边BC、AC的中点,∴AE=4eq\r(5)÷2=2eq\r(5),BD=8÷2=4,∴eq\f(AE,BD)=eq\f(2\r(5),4)=eq\f(\r(5),2).②如解图①,当α=180°时,可得AB∥DE,∵eq\f(AC,AE)=eq\f(BC,BD),∴eq\f(AE,BD)=eq\f(AC,BC)=eq\f(4\r(5),8)=eq\f(\r(5),2);(2)当0°≤α<360°时,eq\f(AE,BD)的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵eq\f(EC,DC)=eq\f(AC,BC)=eq\f(\r(5),2),∴△ECA∽△DCB,∴eq\f(AE,BD)=eq\f(EC,DC)=eq\f(\r(5),2);(3)①当D在AE上时,如解图②,∵AC=4eq\r(5),CD=4,CD⊥AD,∴AD=eq\r(AC2-CD2)=eq\r((4\r(5))2-42)=eq\r(80-16)=8,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=4eq\r(5);②当D在AE延长线上时,如解图③,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,∵AC=4eq\r(5),CD=4,CD⊥AD,∴AD=eq\r(AC2-CD2)=eq\r((4\r(5))2-42)=eq\r(80-16)=8,∵原图中点D、E分别是边BC、AC的中点,∴DE=eq\f(1,2)AB=eq\f(1,2)×(8÷2)=eq\f(1,2)×4=2,∴AE=AD-DE=8-2=6,由(2)可得eq\f(AE,BD)=eq\f(\r(5),2),∴BD=eq\f(6,\f(\r(5),2))=eq\f(12\r(5),5).综上所述,BD的长为4eq\r(5)或eq\f(12\r(5),5).2.解:(1)①∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,由旋转的性质可知,∠OCD=60°,∠ADC=∠BOC=120°,∴∠DAO=360°-60°-90°-120°=90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2.如解图①,连接OD.∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.在Rt△ADO中,∠DAO=90°,∴OA2+AD2=OD2,∴OA2+OB2=OC2;(2)①当α=β=120°时,OA+OB+OC有最小值.作图如解图②,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=AC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴B,O,O′,A′四点共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②当等边△ABC的边长为1时,OA+OB+OC的最小值为A′B=eq\r(3).3.解:(1)①∵△DEC绕点C旋转使点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=eq\f(1,2)AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(2)∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,eq\b\lc\{(\a\vs4\al\co1(∠ACN=∠DCM,∠CMD=∠N=90°,AC=DC)),∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如解图,过点D作DF1∥BE,易求四边形BEDF1是菱形,∴BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°∵BF1=DF1,∠F1BD=eq\f(1,2)∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=eq\f(1,2)×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,eq\b\lc\{(\a\vs4\al\co1(DF1=DF2,∠CDF1=∠CDF2,CD=CD)),∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=eq\f(1,2)×60°=30°,又∵BD=4,∴BE=ED=eq\f(1,2)×4÷cos30°=2÷eq\f(\r(3),2)=eq\f(4\r(3),3),∴BF1=eq\f(4\r(3),3),BF2=BF1+F1F2=eq\f(4\r(3),3)+eq\f(4\r(3),3)=eq\f(8\r(3),3),故BF的长为eq\f(4\r(3),3)或eq\f(8\r(3),3).4.解:(1)当α=60°时,△ABC、△DCE是等边三角形,∴EC=DC,AC=BC,∠ACB=∠DCE=60°,∴∠ACB-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE,在△BDC和△AEC中,eq\b\lc\{(\a\vs4\al\co1(EC=DC,∠BCD=∠ACE,AC=BC)),∴△BDC≌△AEC(SAS),∴BD=AE;(2)BD=eq\r(2)AE;理由如下:如解图①,过点D作DF∥AC,交BC于F.∵DF∥AC,∴∠ACB=∠DFB.∵∠ABC=∠ACB=α,α=45°,∴∠ABC=∠ACB=∠DFB=45

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论