



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27.3位似第1课时位似教师备课素材示例●情景导入1.生活中我们经常把照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.2.如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2∶1,应该怎样做?你能说出画相似图形的一种方法吗?【教学与建议】教学:从实际生活中具有位似特征的现象引入课题,感受位似的存在.建议:可以让学生寻找身边类似的图形,理解位似是一种特殊的位置关系.●归纳导入请观察下列图形,并回答问题.【归纳】1.每组图形内的两个图形是__相似__图形.2.对于两个多边形,如果它们的对应顶点的连线__相交于一点__,并且这点与对应顶点所连线段__成比例__,那么这两个多边形就是位似多边形.对应顶点的连线的交点叫做__位似中心__.【教学与建议】教学:通过几组位似图形的展示及问题的层层深入,对位似图形的概念和性质有初步的了解和认识.建议:强调抓住两个关键点:一是两个图形的对应顶点的连线相交于一点;二是这点与对应顶点所连线段成比例.*命题角度1识别位似图形两个图形位似需满足以下条件:①两个图形相似;②对应边互相平行或在同一条直线上;③两个图形的每对对应点所在直线相交于一点.【例1】下列各组图中,不是位似图形的是(B)eq\o(\s\up7(),\s\do5(A))eq\o(\s\up7(),\s\do5(B))eq\o(\s\up7(),\s\do5(C))eq\o(\s\up7(),\s\do5(D))【例2】已知△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′存在位似关系的是__①②③__.(填序号)eq\o(\s\up7(),\s\do5(①))eq\o(\s\up7(),\s\do5(②))eq\o(\s\up7(),\s\do5(③))eq\o(\s\up7(),\s\do5(④))*命题角度2利用位似的性质求位似中心位似中心是位似图形上对应点所在直线的交点,通过作直线找到交点,这个交点就是位似中心.【例3】如图,两个三角形是位似图形,它们的位似中心是(A)A.点PB.点OC.点MD.点Neq\o(\s\up7(),\s\do5((例3题图)))eq\o(\s\up7(),\s\do5((例4题图)))【例4】如图,△ABC与△A′B′C′是位似图形,且相似比是1∶2.若AB=2cm,则A′B′=__4__cm,并在图中画出位似中心O.*命题角度3利用位似的性质计算位似是一种特殊的相似,故相似图形的一切性质都适用于位似图形.【例5】如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3B.1∶2C.1∶eq\r(3)D.1∶9eq\o(\s\up7(),\s\do5((例5题图)))eq\o(\s\up7(),\s\do5((例6题图)))【例6】如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为__1∶2__.*命题角度4利用位似将图形放大或缩小通过作位似图形,可以将一个图形放大或缩小.作位似图形的关键是确定原图形中各顶点的对应点,原理是位似图形上各对应点到位似中心的距离之比等于相似比.【例7】如图,请在8×8的正方形网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图,△A′B′C′为所求的三角形.高效课堂教学设计1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握画位似图形的方法.▲重点理解并掌握位似图形的定义、性质及画法.▲难点位似图形的多种画法.◆活动1新课导入在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?◆活动2探究新知1.教材P47.提出问题:(1)观察图27.31和图27.32,两个图形中对应点的连线有什么共同特征?(2)位似图形和相似图形有什么联系与区别?(3)如何判断两个图形是否是位似图形?学生完成并交流展示.2.教材P47图27.32,P48第1个探究.提出问题:(1)如何利用位似将一个图形放大或缩小?(2)画位似图形的一般步骤是什么?(3)画位似图形时需要注意什么问题?学生完成并交流展示.◆活动3知识归纳1.如果两个图形不仅是相似图形,而且每组对应点连线相交于一点,那么这样的两个图形叫做位似图形.这个点叫做位似中心.这时的相似比又称为位似比.2.位似图的性质:(1)位似图形一定相似,位似比等于__相似比__;(2)位似图形对应点和位似中心在__同一条直线上__;(3)任意一对对应点到位似中心的距离之比等于位似比或相似比;(4)对应线段__平行__或者在__同一条直线上__.3.总结画位似图形的一般步骤:(1)确定位似中心(位似中心可以在图形外部,也可以在图形内部,还可以在图形的边上,还可以在某一个顶点上);(2)连接图形各顶点与位似中心O的线段(或延长线);(3)按位似比进行取点;(4)顺次连接上述各点,得到放大或缩小的图形.◆活动4例题与练习例1如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是(B)A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F例2如图,矩形ABCD与矩形AB′C′D′是位似图形,A为位似中心,已知矩形ABCD的周长为24,BB′=4,DD′=2,求AB,AD的长.解:∵矩形ABCD的周长为24,∴AB+AD=12.设AB=x,则AD=12-x,AB′=x+4,AD′=14-x.∵矩形ABCD与矩形AB′C′D′是位似图形,∴eq\f(AB,AB′)=eq\f(AD,AD′),即eq\f(x,x+4)=eq\f(12-x,14-x),解得x=8,∴AB=8,AD=12-8=4.例3如图,△ABC与△A′B′C′关于点O位似,BO=3,B′O=6.(1)若AC=5,求A′C′的长;(2)若△ABC的面积为7,求△A′B′C′的面积.解:(1)∵△ABC与△A′B′C′是位似图形,BO∶B′O=3∶6=1∶2,∴△ABC∽△A′B′C′,且相似比为eq\f(1,2),∴eq\f(AC,A′C′)=eq\f(1,2),即eq\f(5,A′C′)=eq\f(1,2),∴A′C′=10;(2)由(1),得eq\f(S△ABC,S△A′B′C′)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(2)=eq\f(1,4),即eq\f(7,S△A′B′C′)=eq\f(1,4),∴S△A′B′C′=7×4=28.练习1.教材P48练习第1,2题.2.下列说法正确的是(C)A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于相似比C.位似多边形中对应对角线之比等于相似比D.位似图形的周长之比等于相似比的平方3.已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论