




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省酒泉市酒泉中学2025年数学高二下期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在其定义域内的一个子区间上不是单调函数,则实数的取值范围是()A. B. C. D.2.命题:,的否定是()A., B.,C., D.,3.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%4.对33000分解质因数得,则的正偶数因数的个数是()A.48 B.72 C.64 D.965.现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,甲:我不坐座位号为和的座位;乙:我不坐座位号为和的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.那么坐在座位号为的座位上的是()A.甲 B.乙 C.丙 D.丁6.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.设集合,,,则A. B.C. D.8.设为虚数单位,复数满足,则A.1 B. C.2 D.9.设抛物线的焦点为F,准线为l,P为抛物线上一点,,垂足为A,如果为正三角形,那么等于()A. B. C.6 D.1210.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率()A.小 B.大 C.相等 D.大小不能确定11.在一次投篮训练中,某队员连续投篮两次.设命题是“第一次投中”,是“第二次投中”,则命题“两次都没有投中目标”可表示为A. B. C. D.12.在中,若,,,则此三角形解的个数为()A.0个 B.1个 C.2个 D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为___14.已知,则展开式中的系数为__________.15.在平面直角坐标系xOy中,动点到两坐标轴的距离之和等于它到定点的距离,记点P的轨迹为,给出下列四个结论:①关于原点对称;②关于直线对称;③直线与有无数个公共点;④在第一象限内,与x轴和y轴所围成的封闭图形的面积小于.其中正确的结论是________.(写出所有正确结论的序号)16.高二(1)班有男生18人,女生12人,现用分层抽样的方法从该班的全体同学中抽取一个容量为5的样本,则抽取的男生人数为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的解集;(2)若恒成立,求实数的取值范围.18.(12分)已知的展开式中,末三项的二项式系数的和等于121;(1)求n的值;(2)求展开式中系数最大的项;19.(12分)已知函数(1)若在区间上是单调递增函数,求实数的取值范围;(2)若在处有极值10,求的值;(3)若对任意的,有恒成立,求实数的取值范围.20.(12分)设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.21.(12分)设复数,复数.(Ⅰ)若,求实数的值.(Ⅱ)若,求实数的值.22.(10分)参与舒城中学数学选修课的同学对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图.定价x(元/千克)102030405060年销量y(千克)115064342426216586z=2lny14.112.912.111.110.28.9参考数据:,.(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).(3)当定价为150元/千克时,试估计年销量.附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回归直线x+的斜率和截距的最小二乘估计分别为
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:求出导函数,求得极值点,函数在含有极值点的区间内不单调.详解:,此函数在上是增函数,又,因此是的极值点,它在含有的区间内不单调,此区间为B.故选B.点睛:本题考查用导数研究函数的极值,函数在不含极值点的区间内一定是单调函数,因此此只要求出极值点,含有极值点的区间就是正确的选项.2、C【解析】
根据全称命题的否定是特称命题,即可进行选择.【详解】因为全称命题的否定是特称命题,故可得,的否定是,.故选:C.本题考查全称命题的否定,属基础题.3、B【解析】试题分析:由题意故选B.考点:正态分布4、A【解析】分析:分的因数由若干个、若干个、若干个、若干个相乘得到,利用分步计数乘法原理可得所有因数个数,减去不含的因数个数即可得结果.详解:的因数由若干个(共有四种情况),若干个(共有两种情况),若干个(共有四种情况),若干个(共有两种情况),由分步计数乘法原理可得的因数共有,不含的共有,正偶数因数的个数有个,即的正偶数因数的个数是,故选A.点睛:本题主要考查分步计数原理合的应用,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.5、C【解析】
对甲分别坐座位号为3或4分类推理即可判断。【详解】当甲坐座位号为3时,因为乙不坐座位号为1和4的座位所以乙只能坐座位号为2,这时只剩下座位号为1和4又丙的要求和乙一样,矛盾,故甲不能坐座位号3.当甲坐座位号为4时,因为乙不坐座位号为1和4的座位,丙的要求和乙一样:所以丁只能坐座位号1,又如果乙不坐座位号为2的座位,丁就不坐座位号为1的座位.所以乙只能坐座位号2,这时只剩下座位号3给丙。所以坐在座位号为3的座位上的是丙.故选:C本题主要考查了逻辑推理能力,考查了分类思想,属于中档题。6、A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.7、C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.详解:由并集的定义可得:,结合交集的定义可知:.本题选择C选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.8、B【解析】
利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由,得,,故选.本题主要考查复数代数形式的乘除运算以及复数的模的计算.9、C【解析】
设准线l与轴交于点,根据抛物线的定义和△APF为正三角形,这两个条件可以得出,在直角三角形中,利用正弦公式可以求出,即求出|PF|的长.【详解】设准线l与轴交于点,所以,根据抛物线的定义和△APF为正三角形,,在中,,,所以|PF|等于6,故本题选C.本题考查了抛物线的定义.10、B【解析】试题分析:四种不同的玻璃球,可设为,随意一次倒出一粒的情况有4种,倒出二粒的情况有6种,倒出3粒的情况有4种,倒出4粒的情况有1种,那么倒出奇数粒的有8种,倒出偶数粒的情况有7种,故倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率大.考点:古典概型.11、D【解析】分析:结合课本知识点命题的否定和“且”联结的命题表示来解答详解:命题是“第一次投中”,则命题是“第一次没投中”同理可得命题是“第二次没投中”则命题“两次都没有投中目标”可表示为故选点睛:本题主要考查了,以及的概念,并理解为真时,,中至少有一个为真。12、C【解析】
判断的大小关系,即可得到三角形解的个数.【详解】,,即,有两个三角形.故选C.本题考查判断三角形解的个数问题,属于简单题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设正方形的边长为1,则扇形的面积为,所以,它落在扇形外正方形内的概率为.14、448.【解析】由题意可得:,则展开式的通项公式为:,令可得:,则的系数为:.15、②③④【解析】
由题意可得当xy≥0,可得xy+x+y﹣1=0,当xy<0时,﹣xy+x+y﹣1=0,画出P的轨迹图形,由图形可得不关于原点对称,关于直线y=x对称,且直线y=1与曲线有无数个公共点;曲线在第一象限与坐标轴围成的封闭图形的面积小于边长为1的等腰三角形的面积,即可得到正确结论个数.【详解】解:动点P(x,y)到两坐标轴的距离之和等于它到定点A(1,1)的距离,可得|x|+|y|,平方化为|xy|+x+y﹣1=0,当xy≥0,可得xy+x+y﹣1=0,即y,即y=﹣1,当xy<0时,﹣xy+x+y﹣1=0,即有(1﹣x)y=1﹣x.画出动点P的轨迹为图:①Γ关于原点对称,不正确;②Γ关于直线y=x对称,正确;③直线y=1与Γ有无数个公共点,正确;④在第一象限内,Γ与x轴和y轴所围成的封闭图形的面积小于,正确.故答案为:②③④.本题考查曲线的方程和图形,考查曲线的性质,画出图形是解题的关键,属于中档题.16、3【解析】
根据分层抽样的比例求得.【详解】由分层抽样得抽取男生的人数为5×18故得解.本题考查分层抽样,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)将代入函数的解析式,并将函数表示为分段函数,分段解出不等式,可得出所求不等式的解集;(2)分和两种情况,将函数的解析式表示为分段函数,求出函数的最小值,然后解出不等式可得出实数的取值范围.【详解】(1)当时,,当时,由,得;当时,由,得;当时,不等式无解.所以原不等式的解集为;(2)当时,;当时,.所以,由,得或,所以实数的取值范围是.本题考查绝对值不等式的解法以及绝不等式不等式恒成立问题,一般采用去绝对值的办法,利用分类讨论思想求解,考查分类讨论思想的应用,属于中等题.18、(1);(2)或【解析】
(1)由末三项二项式系数和构造方程,解方程求得结果;(2)列出展开式通项,设第项为系数最大的项,得到不等式组,从而求得的取值,代入得到结果.【详解】(1)展开式末三项的二项式系数分别为:,,则:,即:,解得:(舍)或(2)由(1)知:展开式通项为:设第项即为系数最大的项,解得:系数最大的项为:或本题考查二项式定理的综合应用,涉及到二项式系数的问题、求解二项展开式中系数最大的项的问题,属于常规题型.19、(1)m≥-(1)(3)m∈[-1,1]【解析】分析:(1)由在区间上是单调递增函数得,当时,恒成立,由此可求实数的取值范围;(1),由题或,判断当时,,无极值,舍去,则可求;(3)对任意的,有恒成立,即在上最大值与最小值差的绝对值小于等于1.求出原函数的导函数,分类求出函数在的最值,则答案可求;详解:(1)由在区间上是单调递增函数得,当时,恒成立,即恒成立,解得(1),由题或当时,,无极值,舍去.所以(3)由对任意的x1,x1∈[-1,1],有|f(x1)-f(x1)|≤1恒成立,得fmax(x)-fmin(x)≤1.且|f(1)-f(0)|≤1,|f(-1)-f(0)|≤1,解得m∈[-1,1],①当m=0时,f'(x)≥0,f(x)在[-1,1]上单调递增,fmax(x)-fmin(x)=|f(1)-f(-1)|≤1成立.②当m∈(0,1]时,令f'(x)<0,得x∈(-m,0),则f(x)在(-m,0)上单调递减;同理f(x)在(-1,-m),(0,1)上单调递增,f(-m)=m3+m1,f(1)=m1+m+1,下面比较这两者的大小,令h(m)=f(-m)-f(1)=m3-m-1,m∈[0,1],h'(m)=m1-1<0,则h(m)在(0,1]上为减函数,h(m)≤h(0)=-1<0,故f(-m)<f(1),又f(-1)=m-1+m1≤m1=f(0),仅当m=1时取等号.所以fmax(x)-fmin(x)=f(1)-f(-1)=1成立.③同理当m∈[-1,0)时,fmax(x)-fmin(x)=f(1)-f(-1)=1成立.综上得m∈[-1,1].点睛:本题考查利用导数研究函数的单调性,考查利用导数求函数的最值,体现了数学转化思想方法与分类讨论的数学思想方法,是难题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030砂轮和砂轮行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 大学信息技术专业教学计划
- 退休环境工程师兼职协议
- 2025年秋季小学一年级家长沟通计划
- 货物运输合同履约金协议
- 初中音乐与戏剧结合的教学计划
- 幼儿园家庭语言互动计划
- 陪护工作规范协议书范文
- 五年级英语跨学科融合教学计划
- 短期园区协调员合同
- 企业自主评价委托协议书
- 2025银行面试题目及答案柜员
- 软装搭配与色彩运用考核试卷
- 2025年中国冶金锰矿石市场调查研究报告
- 2025年国际贸易实务课程考试题及答案
- 2025届广西钦州市东场中学七下数学期末复习检测试题含解析
- 地方政府治理中的典型案例试题及答案
- “卉”心独具工程制图知到智慧树期末考试答案题库2025年昆明理工大学
- 电梯安全管理员培训
- 通信工程安全试题及答案
- 河北开放大学2025年《医用基础化学#》形考任务2答案
评论
0/150
提交评论