甘肃省兰州市第四中学2024-2025学年数学高二第二学期期末学业水平测试试题含解析_第1页
甘肃省兰州市第四中学2024-2025学年数学高二第二学期期末学业水平测试试题含解析_第2页
甘肃省兰州市第四中学2024-2025学年数学高二第二学期期末学业水平测试试题含解析_第3页
甘肃省兰州市第四中学2024-2025学年数学高二第二学期期末学业水平测试试题含解析_第4页
甘肃省兰州市第四中学2024-2025学年数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市第四中学2024-2025学年数学高二第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A=A.x0<x≤3 B.x0≤x≤3 C.x2.已知直线与直线垂直,则的关系为()A. B. C. D.3.执行下面的程序框图,若输出的结果为,则判断框中的条件是()A. B. C. D.4.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是()A. B. C. D.5.已知复数z=1-i,则z2A.2 B.-2 C.2i D.-2i6.已知扇形的圆心角为弧度,半径为,则扇形的面积是()A. B. C. D.7.有个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为()A. B. C. D.8.已知函数,若是函数唯一的极值点,则实数的取值范围为()A. B. C. D.9.已知关于的实系数一元二次方程的一个根在复平面上对应点是,则这个方程可以是()A. B.C. D.10.若集合,,若,则的值为()A. B. C.或 D.或11.已知函数.若不等式的解集中整数的个数为3,则的取值范围是(

)A. B. C. D.12.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交二、填空题:本题共4小题,每小题5分,共20分。13.已知,则__________.14.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.15.函数f(x)=-x-3a(x<0)ax-2(x≥0),(a>0且a≠1)是R上的减函数,则16.已知f(x)是奇函数,且当x∈(0,2)时,f(x)=lnx-ax(),当x∈(-2,0)时,f(x)的最小值是1,则a=__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,,(其中).(1)时,求函数的极值;(2)证:存在,使得在内恒成立,且方程在内有唯一解.18.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.19.(12分)已知椭圆:的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为、.(1)求椭圆的方程;(2)设不经过点A的直线与椭圆交于P、Q两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.20.(12分)已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.21.(12分)盒子中放有大小形状完全相同的个球,其中个红球,个白球.(1)某人从这盒子中有放回地随机抽取个球,求至少抽到个红球的概率;(2)某人从这盒子中不放回地从随机抽取个球,记每抽到个红球得红包奖励元,每抽到个白球得到红包奖励元,求该人所得奖励的分布列和数学期望.22.(10分)设数列的前项和为,且满足.(1)求;(2)猜想数列的通项公式,并用数学归纳法证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先化简求出集合A,B,进而求出A∩B.【详解】∵集合A={x|x-3xB={x|x≥0},∴A∩B={x|0<x≤3}.故选:A.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2、C【解析】

根据两直线垂直,列出等量关系,化简即可得出结果.【详解】因为直线与直线垂直,所以,即选C根据两直线垂直求出参数的问题,熟记直线垂直的充要条件即可,属于常考题型.3、C【解析】

根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,即可得出答案.【详解】解:当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,满足输出结果为,故进行循环的条件,应为:.故选:C.本题考查程序框图的应用,属于基础题.4、D【解析】

利用捆绑法:先从4名男歌手中选一名放在两名女歌手之间,并把他们捆绑在一起看作一个元素和剩余的3名男歌手进行全排列,利用排列组合的知识和分步计数原理求解即可.【详解】根据题意,分两步进行:先从4名男歌手中选一名放在两名女歌手之间,同时对两名女歌手进行全排列有种选择;再把他们捆绑在一起看作一个元素和剩余的3名男歌手进行全排列有种选择,由分步计数原理可得,共有出场方案的种数为.故选:D本题考查利用捆绑法和分步乘法计数原理,结合排列数公式求解排列组合问题;考查运算求解能力和逻辑推理能力;分清排列和组合和两个计数原理是求解本题的关键;属于中档题、常考题型.5、A【解析】解:因为z=1-i,所以z26、D【解析】

利用扇形面积公式(为扇形的圆心角的弧度数,为扇形的半径),可计算出扇形的面积.【详解】由题意可知,扇形的面积为,故选D.本题考查扇形面积的计算,意在考查扇形公式的理解与应用,考查计算能力,属于基础题.7、C【解析】总排法数为,故选C.点睛:本题是排列中的相邻问题,用“捆绑法”求解,解决此问题分两步,第一步把要求相邻的三人捆绑在一起作为一个人,和其他3人看作是4人进行排列,第二步这三人之间也进行排列,然后用乘法原理可得解.8、A【解析】分析:由的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根.详解:函数的定义域是,,是函数唯一的极值点,是导函数的唯一根,在无变号零点,即在上无变号零点,令,,在上单调递减,在上单调递增,的最小值为,必须.故选A.点睛:本题考查由函数的导函数确定极值问题,对参数需要进行讨论.9、A【解析】

先由题意得到方程的两复数根为,(为虚数单位),求出,,根据选项,即可得出结果.【详解】因为方程的根在复平面内对应的点是,可设根为:,(为虚数单位),所以方程必有另一根,又,,根据选项可得,该方程为.故选A本题主要考查复数的方程,熟记复数的运算法则即可,属于常考题型.10、A【解析】

先解出集合,由,得出,于此可得知实数的值.【详解】解方程,即,得,由于,,则,,,,故选:A.本题考查集合间的包含关系,利用包含关系求参数的值,解本题的关键就是将集合表示出来,考查计算能力,属于基础题。11、D【解析】

将问题变为,即有个整数解的问题;利用导数研究的单调性,从而可得图象;利用恒过点画出图象,找到有个整数解的情况,得到不等式组,解不等式组求得结果.【详解】由得:,即:令,当时,;当时,在上单调递减;在上单调递增,且,由此可得图象如下图所示:由可知恒过定点不等式的解集中整数个数为个,则由图象可知:,即,解得:本题正确选项:本题考查根据整数解的个数求解参数取值范围的问题,关键是能够将问题转化为曲线和直线的位置关系问题,通过数形结合的方式确定不等关系.12、D【解析】

通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:对函数的解析式求导,得到其导函数,把代入导函数中,列出关于的方程,进而得到的值.详解:因为,所以,令,得到,解得,故答案为.点睛:本题主要考查了导数的运算,运用求导法则得出函数的导函数,意在考查对基础知识掌握的熟练程度,属于基础题.14、[﹣,0]【解析】

建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1,计算•x2﹣x,利用二次函数的性质求得它的值域即可.【详解】解:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),由题意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴•x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函数的性质可得,当x=y时,•取得最小值为;当x=0或1,且y=0或1时,•取得最大值为0,则•的取值范围是[,0].故答案为:[,0].本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目.15、(0,【解析】试题分析:因为函数f(x)=-x-3a(x<0)ax-2(x≥0)(a>0且a≠1)是R上的减函数,即⇒.故其每一段都为减函数,且前一段的最小值须大于等于后一段的最大值;故答案为考点:分段函数的单调性.【方法点晴】本题是对分段函数单调性的考查,难度适中,容易进入陷阱,要想整个函数单调递减,前提必须为分段函数的每一段都有自己的单调性,所以在研究整函数的单调性时每一段都在考查范围内.当函数为减函数时,故其每一段都为减函数,且前一段的最小值须大于等于后一段的最大值;当函数为增函数时,故其每一段都为增函数,且前一段的最大值须小于等于后一段的最小值.16、1【解析】由题意,得x∈(0,2)时,f(x)=lnx-ax(a>)有最大值-1,f′(x)=-a,由f′(x)=0得x=∈(0,2),且x∈(0,)时,f′(x)>0,f(x)单调递增,x∈(,2)时,f′(x)<0,f(x)单调递减,则f(x)max=f()=ln-1=-1,解得a=1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);;(2)见解析.【解析】

(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)求出f(x)的导数,通过讨论m的范围,求出f(x)的单调区间,求出满足条件的m的范围,从而证出结论即可.【详解】解:(I)当时,,令,得,,当变化时,的变化如下表:极大值极小值由表可知,;;(II)设,,,若要有解,需有单减区间,则要有解,由,,记为函数的导数则,当时单增,令,由,得,需考察与区间的关系:①当时,,,在上,单增,故单增,,无解;②当,时,,,因为单增,在上,在上当时,(i)若,即时,,单增,,无解;(ii)若,即,,在上,,单减;,,在区间上有唯一解,记为;在上,单增,,当时,故在区间上有唯一解,记为,则在上,在上,在上,当时,取得最小值,此时若要恒成立且有唯一解,当且仅当,即,由有联立两式解得.综上,当时,本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、函数恒成立问题,是一道综合题.18、(1);(2)440【解析】

(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.19、(1)(2)直线过定点【解析】

(1)根据圆的圆心和半径写出圆的标准方程,令求得圆与轴交点的坐标,由此列方程组求得的值,进而求得椭圆的标准方程.(1)根据,利用点斜式设出直线的方程,并分别代入椭圆方程解出两点的坐标,由此求得直线的方程,由此求得定点的坐标为.【详解】解:(1)依题意知点A的坐标为,则以点A圆心,以为半径的圆的方程为:,令得,由圆A与y轴的交点分别为、可得,解得,故所求椭圆的方程为.(2)由得,可知PA的斜率存在且不为0,设直线-①则-②将①代入椭圆方程并整理得,可得,则,类似地可得,由直线方程的两点式可得:直线的方程为,即直线过定点,该定点的坐标为.本小题主要考查圆的标准方程和几何性质,考查直线和椭圆的位置关系,考查直线方程的两点式以及直线过定点的问题.属于中档题.要求直线和椭圆的交点坐标,需要联立直线和椭圆的方程,解方程组求得,这里需要较强的运算能力.直线过定点的问题,往往是将含有参数的部分合并,由此求得直线所过的定点.20、(1)8(2)[-2,0].【解析】

(1)根据函数f(x)最小值是f(﹣1)=0,且c=1,求出a,b,c的值,即可求F(2)+F(﹣2)的值;(2)由于函数f(x)=ax2+bx+c(a>0,b∈R,c∈R),且a=1,c=0,所以f(x)=x2+bx,进而在满足|f(x)|≤1在区间(0,1]恒成立时,求出即可.【详解】(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2,∴f(x)=(x+1)2.∴F(x)=∴F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由a=1,c=0,得f(x)=x2+bx,从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论