江苏省无锡市江阴市四校2024-2025学年高二数学第二学期期末监测试题含解析_第1页
江苏省无锡市江阴市四校2024-2025学年高二数学第二学期期末监测试题含解析_第2页
江苏省无锡市江阴市四校2024-2025学年高二数学第二学期期末监测试题含解析_第3页
江苏省无锡市江阴市四校2024-2025学年高二数学第二学期期末监测试题含解析_第4页
江苏省无锡市江阴市四校2024-2025学年高二数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市江阴市四校2024-2025学年高二数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,命题“若”的否命题是A.若,则 B.若,则C.若,则 D.若,则2.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.3.若复数满足,则复数的虚部为.A.-2 B.-1 C.1 D.2.4.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数关于点对称D.函数在上是增函数5.设函数,则函数的定义域为()A. B. C. D.6.在中,角的对边分别是,若,则的值为()A.1 B. C. D.7.若为纯虚数,则实数的值为()A.-2 B.2 C.-3 D.38.用数学归纳法证明:“”,由到时,等式左边需要添加的项是()A. B.C. D.9.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy10.已知随机变量服从正态分布,若,则()A. B. C. D.11.曲线在处的切线的斜率为()A. B. C. D.12.若,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,则按照以上规律,若具有“穿墙术”,则______.14.已知,则________.(用含的式子表示)15.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.16.若复数满足,其中是虚数单位,则的实部为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);(II)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求.附:若则,.18.(12分)已知函数.(1)若函数在区间上单调递增,求的取值范围;(2)设函数,若存在,使不等式成立,求实数的取值范围.19.(12分)已知函数.(1)求函数的单调区间;(2)当时,证明:对任意的,.20.(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?22.(10分)在新高考改革中,打破文理分科的“(选)”模式:我省实施“”,“”代表语文、数学、外语门高考必考科目,“”是物理、历史两科选一科,这里称之为主选,“”是化学、生物、政治、地理四科选两科,这里称为辅选,其中每位同学选哪科互不影响且等可能.(Ⅰ)甲、乙两同学主选和辅选的科目都相同的概率;(Ⅱ)有一个人的学习小组,主选科目是物理,问:这人中辅选生物的人数是一个随机变量,求的分布列及期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据否命题的定义:即否定条件又否定结论,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”故选A2、A【解析】

根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.3、D【解析】

根据复数除法的运算法则去计算即可.【详解】因为,所以,虚部是,故选D.本题考查复数的除法运算以及复数实部、虚部判断,难度较易.复数除法运算时,注意利用平方差公式的形式将分母实数化去计算4、D【解析】

由导函数的图象得到原函数的增减区间及极值点,然后逐一分析四个命题即可得到答案.【详解】由函数f(x)的导函数图象可知,当x∈(−∞,−a),(−a,b)时,f′(x)<0,原函数为减函数;当x∈(b,+∞)时,f′(x)>0,原函数为增函数.故不是函数的极值点,故A错误;当或时,导函数的值为0,函数的值未知,故B错误;由图可知,导函数关于点对称,但函数在(−∞,b)递减,在(b,+∞)递增,显然不关于点对称,故C错误;函数在上是增函数,故D正确;故答案为:D.本题考查函数的单调性与导数的关系,属于导函数的应用,考查数形结合思想和分析能力,属于中等题.5、B【解析】

由根式内部的代数式大于等于0求得f(x)的定义域,再由在f(x)的定义域内求解x的范围得答案.【详解】由2﹣2x≥0,可得x≤1.由,得x≤2.∴函数f()的定义域为(﹣∞,2].故选:B.本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.6、C【解析】

在中利用正弦定理和二倍角公式能求出角,再依据余弦定理列出关于角的关系式,化简即得.【详解】∵,∴由正弦定理可得,即.由于,∴.∵,∴.又,由余弦定理可得,∴.故选C.本题主要考查正余弦定理解三角形以及三角恒等变换.7、C【解析】

本题首先可以确定复数的实部和虚部,然后根据纯虚数的相关性质即可列出方程组,通过计算即可得出结果.【详解】因为为纯虚数,所以,解得,故选C.本题考查复数的相关性质,主要考查纯虚数的相关性质,纯虚数的实部为0且虚部不为0,考查运算求解能力,考查方程思想,是简单题.8、D【解析】

写出时,左边最后一项,时,左边最后一项,由此即可得到结论【详解】解:∵时,左边最后一项为,时,左边最后一项为,∴从到,等式左边需要添加的项为一项为故选:D.本题考查数学归纳法的概念,考查学生分析解决问题的能力,属于基础题.9、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.10、C【解析】分析:先根据正态分布得再求最后求得=0.34.详解:由正态分布曲线得所以所以=0.5-0.16=0.34.故答案为:C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.11、B【解析】

因为,所以.故选B.12、D【解析】

先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.【详解】令得,,在选择项中,令排除A,C;在选择项中,令,排除B,,故选D本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、24【解析】

观察所告诉的式子,找出其中的规律,可得n的值.【详解】解:观察所给式子的规律可得:,,,故可得:.故答案为:24.本题主要考查归纳推理,注意根据题中所给的式子找出规律进行推理.14、【解析】

通过寻找,与特殊角的关系,利用诱导公式及二倍角公式变形即可.【详解】因为,即,所以,所以,所以,又.本题主要考查诱导公式和二倍角公式的应用,意在考查学生分析解决问题的能力.15、1【解析】

由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16、3【解析】

由复数除法求得复数z,再求得复数实部.【详解】由题意可得,所以的实部为3,填3.本题主要考查复数的除法以及复数的实部辨析,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(II)(i);(ii).【解析】试题分析:(I)由频率分布直方图可估计样本特征数众数、中位数、均值、方差.若同一组的数据用该组区间的中点值作代表,则众数为最高矩形中点横坐标.中位数为面积等分为的点.均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值.(II)(i)由已知得,,故;(ii)某用户从该企业购买了100件这种产品,相当于100次独立重复试验,则这100件产品中质量指标值位于区间的产品件数,故期望.试题分析:(I)抽取产品的质量指标值的样本平均值和样本方差分别为,.(II)(i)由(I)知,服从正态分布,从而.(ii)由(i)可知,一件产品的质量指标值位于区间的概率为,依题意知,所以.【考点定位】1、频率分布直方图;2、正态分布的原则;3、二项分布的期望.18、(1);(2).【解析】试题分析:(1)由函数的解析式可得在上单调递增,则的取值范围是;(2)原问题等价于存在,使不等式成立.构造新函数,结合函数的性质可得实数的取值范围为.试题解析:(1)由得,在上单调递增,,的取值范围是.(2)存在,使不等式成立,存在,使不等式成立.令,从而,,,在上单调递增,.实数的取值范围为.19、(1)单调递减区间为,单调递增区间为(2)证明见解析【解析】

(1)函数定义域为,求导得到,根据导数正负得到函数的单调区间.(2),不等式等价于恒成立,设,求函数的最小值得到,得到证明.【详解】(1),定义域为,,令;令.∴函数的单调递减区间为,单调递增区间为(2),即证恒成立令,即证恒成立,,∴,使成立,即则当时,,当时,∴在上单调递减,在上单调递增.∴又因,即∴又因,即得证.本题考查了函数的单调区间,恒成立问题,将恒成立问题转化为函数的最值问题是解题的关键.20、(1);(2).【解析】

(1)由题意结合递推关系式可得数列是首项为,公比为的等比数列,则.(2)由题意结合(1)的结论可得.错位相减可得数列的前项和.【详解】(1)①②①-②得,则,在①式中,令,得.数列是首项为,公比为的等比数列,.(2).所以,③则,④③-④得,,.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.21、(1)216(2)36(3)120【解析】分析:(1)分两种情况讨论甲在最左端时,有,当甲不在最左端时,有(种)排法,由分类计数加法原理可得结果;(2)分三步:将看成一个整体,将于剩余的2件产品全排列,有3个空位可选,根据分步计数乘法原理可得结果;(3)用表示歌舞类节目,小品类节目,相声类节目,利用枚举法可得共有种,每一种排法种的三个,两个可以交换位置,故总的排法为种.详解:(1)当甲在最左端时,有;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有(种)排法,共计(种)排法.(2)根据题意,分3步进行分析:产品与产品相邻,将看成一个整体,考虑之间的顺序,有种情况,将于剩余的2件产品全排列,有种情况,产品与产品不相邻,有3个空位可选,即有3种情况,共有种;(3)法一:用表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种:每一种排法种的三个,两个可以交换位置,故总的排法为种.法二:分两步进行:(1)先将3个歌曲进行全排,其排法有种;(2)将小品与相声插入将歌曲分开,若两歌舞之间只有一个其他节目,其插法有种.若两歌舞之间有两个其他节目时插法有种.所以由计数原理可得节目的排法共有(种).点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论