新疆维吾尔自治区乌鲁木齐市2025年数学高二下期末检测试题含解析_第1页
新疆维吾尔自治区乌鲁木齐市2025年数学高二下期末检测试题含解析_第2页
新疆维吾尔自治区乌鲁木齐市2025年数学高二下期末检测试题含解析_第3页
新疆维吾尔自治区乌鲁木齐市2025年数学高二下期末检测试题含解析_第4页
新疆维吾尔自治区乌鲁木齐市2025年数学高二下期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区乌鲁木齐市2025年数学高二下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是()A.直线 B.抛物线C.离心率为的椭圆 D.离心率为3的双曲线2.若集合,,则()A. B.C. D.3.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A. B.C. D.4.有一段“三段论”,其推理是这样的:对于可导函数,若,则是函数的极值点,因为函数满足,所以是函数的极值点”,结论以上推理A.大前提错误 B.小前提错误 C.推理形式错误 D.没有错误5.设则()A.都大于2 B.至少有一个大于2C.至少有一个不小于2 D.至少有一个不大于26.若一圆柱的侧面积等于其表面积的,则该圆柱的母线长与底面半径之比为()A.1:1 B.2:1 C.3:1 D.4:17.已知命题,则命题的否定为()A. B.C. D.8.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为()A. B. C. D.9.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.10.设i是虚数单位,z表示复数z的共轭复数.若z=1+i,则ziA.-2B.-2iC.2D.2i11.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.12.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.14.已知,则的展开式中常数项为____15.已知实数x,y满足条件,则z=x+3y的最小值是_______________.16.长方体内接于球O,且,,则A、B两点之间的球面距离为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球(Ⅰ)求取出的3个球中至少有一个红球的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.18.(12分)已知集合.(1)若,求实数的值;(2)若,求实数的取值范围.19.(12分)如图是某市年月日至日的空气质量指数趋势图,某人随机选择年月日至月日中的某一天到达该市,并停留天.(1)求此人到达当日空气质量指数大于的概率;(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)20.(12分)已知椭圆:的离心率,过椭圆的上顶点和右顶点的直线与原点的距离为,(1)求椭圆的方程;(2)是否存在直线经过椭圆左焦点与椭圆交于,两点,使得以线段为直径的圆恰好经过坐标原点?若存在,求出直线方程;若不存在,请说明理由.21.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为(1)求椭圆C的方程;(2)当直线l的斜率为3时,求ΔPOQ的面积;(3)在x轴上是否存在点M(m,0),满足|PM|=|QM|?若存在,求出m的取值范围;若不存在,请说明理由.22.(10分)若展开式中第二、三、四项的二项式系数成等差数列.(1)求的值及展开式中二项式系数最大的项;(2)此展开式中是否有常数项,为什么?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.详解:∵正四面体V﹣ABC∴面VBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角V﹣BC﹣A的平面角令其为θ则Rt△PGH中,|PD|:|PH|=sinθ(θ为V﹣BC﹣A的二面角的大小).又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|∴|PV|:|PH|=sinθ<1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sinθ,又在正四面体V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.故答案为:C.点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.(2)解答本题的关键是联想到圆锥曲线的第二定义.2、A【解析】分析:求出及,即可得到.详解:则.故选C.点睛:本题考查集合的综合运算,属基础题.3、B【解析】试题分析:由题意得,数表的每一行都是等差数列,且第一行公差为,第二行公差为,第三行公差为,第行公差为,第一行的第一个数为;第二行的第一个数列为;第三行的第一个数为;;第行的第一个数为,第行只有,故选B.考点:数列的综合应用.【方法点晴】本题主要考查了数列的综合问题,其中解答中涉及到等差数列的概念与通项公式,等比数列的通项公式等知识点应用,着重考查了学生分析问题和解答问题的能力,以及学生的转化与化归思想的应用,本题的解答中正确理解数表的结构,探究数表中数列的规律是解答的关键,试题有一定的难度,属于中档试题.4、A【解析】

在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.【详解】对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,而大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,∴大前提错误,故选A.本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.5、C【解析】

由基本不等式,a,b都是正数可解得.【详解】由题a,b,c都是正数,根据基本不等式可得,若,,都小于2,则与不等式矛盾,因此,至少有一个不小于2;当,,都等于2时,选项A,B错误,都等于3时,选项D错误.选C.本题考查了基本不等式,此类题干中有多个互为倒数的项,一般都可以先用不等式求式子范围,再根据题目要求解题.6、B【解析】

设这个圆柱的母线长为,底面半径为,根据已知条件列等式,化简可得答案.【详解】设这个圆柱的母线长为,底面半径为,则,化简得,即,故选:B本题考查了圆柱的侧面积公式,考查了圆柱的表面积公式,属于基础题.7、A【解析】

根据全称命题的否定为特称命题,即可直接得出结果.【详解】因为命题,所以命题的否定为:故选A本题主要考查含有一个量词的命题的否定,只需改写量词与结论即可,属于常考题型.8、C【解析】

基本事件总数n36,小明恰好分配到甲村小学包含的基本事件个数m12,由此能求出小明恰好分配到甲村小学的概率.【详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总数n36,小明恰好分配到甲村小学包含的基本事件个数m12,∴小明恰好分配到甲村小学的概率为p.故选C.本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.9、B【解析】

分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.10、C【解析】试题分析:因为z=1+i,所以z=1-i,所以z考点:复数的运算.视频11、A【解析】

先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、A【解析】

首先解一元二次不等式,再根据集合的包含关系判断充分条件、必要条件;【详解】解:因为,所以或,即因为,所以“”是“”的充分不必要条件,故选:本题考查一元二次不等式的解法,充分条件、必要条件的判定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.14、-32【解析】n=,二项式的展开式的通项为,令=0,则r=3,展开式中常数项为(-2)3=-8×4=-32.故答案为-32.点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.15、-5【解析】作可行域,则直线z=x+3y过点A(1,-2)取最小值-5点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16、【解析】

利用长方体外接球直径为其体对角线长求得外接球半径,及所对球心角,利用弧长公式求出答案.【详解】由,,得,长方体外接球的半径为正三角形,,两点间的球面距离为,故答案为:.本题考查了长方体外接球问题,以及求两点球面距离,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)可以求其反面,一个红球都没有,求出其概率,然后求取出的1个球中至少有一个红球的概率,从而求解;(Ⅱ)可以记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,求出事件B和C的概率,从而求出1个球得分之和恰为1分的概率;(Ⅲ)ξ可能的取值为0,1,2,1,分别求出其概率【详解】解:(Ⅰ)取出的1个球中至少有一个红球的概率:(1分)(Ⅱ)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则.…(6分)(Ⅲ)ξ可能的取值为0,1,2,1.…(7分),,,.…(11分)ξ的分布列为:ξ0121P考点:1古典概型概率;2分布列18、(1)(2)或【解析】

(1)先化简集合,,根据求解.(2)由(1)得到或,再利用子集的定义由求解.【详解】(1)因为集合,,又因为,所以,所以.(2)或,因为,所以或,解得或.本题主要考查集合的基本关系及其运算,还考查了运算求解的能力,属于中档题.19、(1);(2)答案见解析;(3)答案见解析.【解析】分析:(1)由空气质量指数趋势图,直接利用古典概型概率公式可得“此人到达当日空气质量指数大于”的概率;(2)由题意可知,的可能取值为,,,分别利用古典概型概率公式求出相应的概率,由此能求出故的分布列,利用期望公式可得;(3)由图知,从日开始,连续三天(日,日,日)空气质量指数方差最大.详解:(1)设“此人到达当日空气质量指数大于”的事件为,则;(2)的可能取值为,,,则,,,故的分布列为:所以.(3)由图知,从日开始,连续三天(日,日,日)空气质量指数方差最大.点睛:本题主要考查互斥事件的概率公式、以及离散型随机变量的分布列与数学期望,属于中档题.求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20、(1);(2),或.【解析】试题分析:(1)由题意,根据离心率定义得到与的关系式,再由点求出直线的方程,根据点到直线距离公式,得到与的关系式,再结合,从而得出椭圆方程;(2)根据题意,可将直线斜率存在与否进行分类讨论,由“线段为直径”,得,再利用向量数量积的坐标运算,从而解决问题.试题解析:(1)由已知得,因为过椭圆的上顶点和右顶点的直线与原点的距离为,所以,解得故所求椭圆的方程:(2)椭圆左焦点,①当直线斜率不存在时,直线与椭圆交于两点,显然不存在满足条件的直线.………6分②当直线斜率存在时,设直线联立,消得,由于直线经过椭圆左焦点,所以直线必定与椭圆有两个交点,恒成立设则,若以为直径的圆过点,则,即(*)而,代入(*)式得,即,解得,即或.所以存在或使得以线段MN为直径的圆过原点.故所求的直线方程为,或.21、(1)x24+y23=1(2)453(3)在【解析】

(1)根据题中条件列有关a、b、c的方程组,解出这三个数,可得出椭圆C的标准方程;(2)先写出直线l的方程,并设点Px1,y1、Qx2,y2,将直线l的方程与椭圆C的方程联立,利用弦长公式求出(3)①当直线l的斜率为零时,得出m=0;②当直线l的斜率不为零时,设直线l的方程为y=kx-1,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论