




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华一中2025届数学高二下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的分布列为-101设,则的值为()A.4 B. C. D.12.“,”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是()A. B. C. D.4.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.5.电脑芯片的生产工艺复杂,在某次生产试验中,得到组数据,,,,,.根据收集到的数据可知,由最小二乘法求得回归直线方程为,则()A. B. C. D.6.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则().A. B. C. D.7.从一批苹果中抽出5只苹果,它们的质量分别为125、a、121、b、127(A.4 B.5 C.2 D.58.已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是()A. B. C. D.9.用反证法证明命题:“若实数,满足,则,全为0”,其反设正确的是()A.,至少有一个为0 B.,至少有一个不为0C.,全不为0 D.,全为010.若的展开式的各项系数和为32,则实数a的值为()A.-2 B.2 C.-1 D.111.函数在处的切线方程是()A. B. C. D.12.定义语句“”表示把正整数除以所得的余数赋值给,如表示7除以3的余数为1,若输入,,则执行框图后输出的结果为()A.6 B.4 C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知直线的一个方向向量,平面的一个法向量,若,则______.14.已知曲线F(x,y)=0关于x轴、y轴和直线y=x均对称,设集合S={(x,y)|F(x,y)=0,x∈Z,y∈Z}.下列命题:①若(1,2)∈S,则(-2,-1)∈S;②若(0,2)∈S,则S中至少有4个元素;③S中元素的个数一定为偶数;④若{(x,y)|y2=4x,x∈Z,y∈Z}⊆S,则{(x,y)|x2=-4y,x∈Z,y∈Z}⊆S.其中正确命题的序号为______.(写出所有正确命题的序号)15.已知函数的图象上存在点,函数的图象上存在点,且点和点关于原点对称,则实数的取值范围是________.16.已知函数,则__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.18.(12分)已知,,求及的值.19.(12分)为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀,,(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.20.(12分)近来国内一些互联网公司为了赢得更大的利润、提升员工的奋斗姿态,要求员工实行“996”工作制,即工作日早9点上班,晚上21点下班,中午和傍晚最多休息1小时,总计工作10小时以上,并且一周工作6天的工作制度,工作期间还不能请假,也没有任何补贴和加班费.消息一出,社交媒体一片哗然,有的人认为这是违反《劳动法》的一种对员工的压榨行为,有的人认为只有付出超越别人的努力和时间,才能够实现想要的成功,这是提升员工价值的一种有效方式.对此,国内某大型企业集团管理者认为应当在公司内部实行“996”工作制,但应该给予一定的加班补贴(单位:百元),对于每月的补贴数额集团人力资源管理部门随机抽取了集团内部的1000名员工进行了补贴数额(单位:百元)期望值的网上问卷调查,并把所得数据列成如下所示的频数分布表:(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为员工的加班补贴服从正态分布,若该集团共有员工40000人,试估计有多少员工期待加班补贴在8100元以上;(3)已知样本数据中期望补贴数额在范围内的8名员工中有5名男性,3名女性,现选其中3名员工进行消费调查,记选出的女职员人数为,求的分布列和数学期望.附:若,则,,.21.(12分)(1)已知矩阵的一个特征值为,其对应的特征向量,求矩阵及它的另一个特征值.(2)在极坐标系中,设P为曲线C:上任意一点,求点P到直线l:的最小距离.22.(10分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF//AC,AB=,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDE;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由的分布列,求出,再由,求得.【详解】,因为,所以.本题考查随机变量的期望计算,对于两个随机变量,具有线性关系,直接利用公式能使运算更简洁.2、A【解析】
利用充分条件和必要条件的定义进行判断即可.【详解】若,则必有.若,则或.所以是的充分不必要条件.故选:A.本题主要考查充分条件和必要条件的定义和判断.3、C【解析】试题分析:由题可先算出10个元素中取出3个的所有基本事件为;种情况;而三种粽子各取到1个有种情况,则可由古典概率得;考点:古典概率的算法.4、D【解析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.5、D【解析】分析:根据回归直线方程经过的性质,可代入求得,进而求出的值.详解:由,且可知所以所以选D点睛:本题考查了回归直线方程的基本性质和简单的计算,属于简单题.6、A【解析】
先求事件A包含的基本事件,再求事件AB包含的基本事件,利用公式可得.【详解】由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有个;事件A包含的基本事件有个;在事件A发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为个,而总的基本事件为,故所求概率为,故选A.本题主要考查条件概率的求解,注意使用缩小事件空间的方法求解.7、C【解析】
本题由题意可知,首先可以根据a、b中一个是124,得出另一个是:【详解】从一批苹果中抽出5只苹果,它们的质量分别为125、a、该样本的中位数和平均值均为124,所以a,b中一个是另一个是:5×124-125-124-121-127=123,所以样本方差s2所以该样本的标准差s是2,故选:C。本题考查样本的标准差的求法,考查平均数、中位数、方差、标准差等基础知识,考查运算求解能力,是基础题,本题主要是能够读懂题目,能从题目所给条件中找出a、8、B【解析】,,故函数在区间上递增,,,故函数在上递减.所以,解得,故选B.9、B【解析】
反证法证明命题时,首先需要反设,即是假设原命题的否定成立即可.【详解】因为命题“若实数,满足,则,全为0”的否定为“若实数,满足,则,至少有一个不为0”;因此,用反证法证明命题:“若实数,满足,则,全为0”,其反设为“,至少有一个不为0”.故选B本题主要考查反证的思想,熟记反证法即可,属于常考题型.10、D【解析】
根据题意,用赋值法,在中,令可得,解可得a的值,即可得答案.【详解】根据题意,的展开式的各项系数和为32,令可得:,解可得:,故选:D.本题考查二项式定理的应用,注意特殊值的应用.11、A【解析】
求导函数,切点切线的斜率,求出切点的坐标,即可得到切线方程.【详解】求曲线y=exlnx导函数,可得f′(x)=exlnx∴f′(1)=e,∵f(1)=0,∴切点(1,0).∴函数f(x)=exlnx在点(1,f(1))处的切线方程是:y﹣0=e(x﹣1),即y=e(x﹣1)故选:A.本题考查导数的几何意义,考查学生的计算能力,属于基本知识的考查.12、C【解析】
模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.【详解】第一次进入循环,因为56除以18的余数为2,所以,,,判断不等于0,返回循环;第二次进入循环,因为18除以2的余数为0,所以,,,判断等于0,跳出循环,输出的值为2.故选C.本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意得出,由此可得出,解出实数、的值,由此可得出的值.【详解】,,且,,,解得,.因此,.故答案为:.本题考查利用直线与平面垂直求参数,将问题转化为直线的方向向量与平面法向量共线,考查化归与转化思想的应用,属于基础题.14、①②④【解析】
结合曲线F(x,y)=0关于x轴、y轴和直线y=x均对称,利用对称性分别进行判断即可.【详解】①若(1,2)∈S,则(1,2)关于y=x对称的点(2,1)∈S,关于x轴对称的点(2,-1)∈S,关于y轴对称的点(-2,-1)∈S;故①正确,②若(0,2)∈S,关于x轴对称的点(0,-2)∈S,关于y=x对称的点(2,0)∈S,(-2,0)∈S,此时S中至少有4个元素;故②正确,③若(0,0)∈S,则(0,0)关于x轴,y轴,y=x对称的点是自身,此时S中元素的个数为奇数个,故③错误;④若{(x,y)|y2=4x,x∈Z,y∈Z}⊆S,则关于y对称的集合为{(x,y)|y2=-4x,x∈Z,y∈Z}⊆S,从而{(x,y)|y2=-4x,x∈Z,y∈Z}⊆S关于y=x对称的集合{(x,y)|x2=-4y,x∈Z,y∈Z}⊆S,故④正确,故答案为:①②④本题主要考查命题的真假判断,结合函数图象的对称性分别进行验证是解决本题的关键,属于中档题.15、【解析】
由题可以转化为函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,利用导数法求出函数的值域,可得答案.【详解】函数y=﹣x2﹣2的图象与函数y=x2+2的图象关于原点对称,若函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,则f′(x),当x∈[,1)时,f′(x)<0,当x∈(1,e]时,f′(x)>0,故当x=1时,f(x)取最小值3,由f()4,f(e)=e2,故当x=e时,f(x)取最大值e2,故a∈[3,e2],故答案为本题考查的知识点是函数图象的对称性,函数的值域,难度中档.16、【解析】
对函数求导,再令可求出,于是可得出函数的解析式。【详解】对函数求导得,,解得,因此,,故答案为:.本题考查导数的计算,在求导数的过程中,注意、均为常数,可通过在函数解析式或导数解析式赋值解得,考查运算求解能力,属于中等题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不变化;(2);(3)先派甲,再派乙,最后派丙时,均值(数字期望)达到最小【解析】
(1)按甲在先,乙次之,丙最后的顺序派人,任务能被完成的概率为.若甲在先,丙次之,乙最后的顺序派人,任务能被完成的概率为,发现任务能完成的概率是一样.同理可以验证,不论如何改变三个人被派出的先后顺序,任务能被完成的概率不发生变化.(2)由题意得可能取值为∴,∴其分布列为:
.(3),∴要使所需派出的人员数目的均值(数字期望)达到最小,则只能先派甲、乙中的一人.∴若先派甲,再派乙,最后派丙,则;若先派乙,再派甲,最后派丙,则,,∴先派甲,再派乙,最后派丙时,均值(数字期望)达到最小.18、,.【解析】
计算出的取值范围,判断出的符号,利用同角三角函数的平方关系计算出的值,然后利用半角公式计算出的值.【详解】,所以,,且,,,由,得.本题考查利用同角三角函数的基本关系求值,以及利用半角公式求值,在计算时,首先要考查角的象限,确定所求函数值的符号,再利用相关公式进行计算,考查运算求解能力,属于基础题.19、(1)列联表见解析,有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)分布列见解析,【解析】分析:(1)先根据数据填表,再代入卡方公式求,最后与参考数据作比较得结论,(2)先根据分层抽样得抽取人数,再确定随机变量取法,利用组合数确定对应概率,列表可得分布列,最后根据数学期望公式求期望.详解:(1)依题意得有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班分数段中抽人数分别为2、3、2.依题意随机变量的所有可能取值为点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.20、(1)约为百元;(2)估计有920名员工;(3)分布列见解析,【解析】
(1)样本的中位数为,根据中位数两侧的频率相等列出方程,可得答案;(2)由近似地认为员工的加班补贴服
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转让广场合同协议书
- 2025年广州市标准版房屋租赁合同
- 药店铺货合同协议书
- 代发合同协议书模板图片
- 阴道炎相关试题及答案
- 2025办公室装修设计合同范本,办公室装修设计合同样本
- 富士康合同解除协议书
- 四级软件测试工程师考试知识体系试题及答案
- 数学考前试题及答案大全
- 生产计划面试题目及答案
- (完整word版)电梯管理证复审申请表
- 材料科学基础基础知识点总结
- 医学伦理审查申请表1
- 数控铣工图纸(60份)(共60页)
- 香樟栽植施工方案
- 惠州市出租车驾驶员从业资格区域科目考试题库(含答案)
- 加工设备工时单价表
- 高脂血症药物治疗ppt课件
- 高层建筑等电位联结安装技术分析探讨
- 模型预测控制(课堂PPT)
- OQC出货检验规范及方法
评论
0/150
提交评论