




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆哈密石油高级中学2024-2025学年高二数学第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是()A. B. C. D.2.若,则等于()A. B. C. D.3.在如图所示的“茎叶图”表示的数据中,众数和中位数分别().A.23与26 B.31与26 C.24与30 D.26与304.若复数是纯虚数,则实数的值为()A.1或2 B.或2 C. D.25.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件6.已知抛物线,过其焦点且斜率为1的直线交抛物线于两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为A. B.C. D.7.在复平面上,复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.集合,则()A. B. C. D.9.已知曲线在点处的切线平行于直线,那么点的坐标为()A.或 B.或C. D.10.设全集,集合,,则()A. B. C. D.11.设两个正态分布和的密度函数图像如图所示.则有()A.B.C.D.12.已知函数,若,,,则,,的大小关系是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的零点,则整数的值为______.14.设函数.若为奇函数,则曲线在点处的切线方程为___________.15.命题“使得”是______命题.(选填“真”或“假”)16.已知点在函数的图象上,点,在函数的图象上,若是以为直角顶点的等腰直角三角形,且点,的纵坐标相同,则点的横坐标的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,是边长为2的正方形,平面平面,直线与平面所成的角为,.(1)若,分别为,的中点,求证:直线平面;(2)求二面角的正弦值.18.(12分)已知椭圆C:的离心率为,且过点.求椭圆的标准方程;设直线l经过点且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.19.(12分)证明:当时,.20.(12分)设命题函数的值域为;命题对一切实数恒成立,若命题“”为假命题,求实数的取值范围.21.(12分)选修4—5:不等式选讲设函数.(1)若,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.22.(10分)平面直角坐标系中,直线的参数方程为,(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的极坐标方程与曲线的直角坐标方程;(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据古典概型计算恰好是2个白球1个红球的概率.详解:由题得恰好是2个白球1个红球的概率为.故答案为:C.点睛:(1)本题主要考查古典概型,意在考查学生对这些知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.2、D【解析】
中最大的数为,包含个数据,且个数据是连续的正整数,由此可得到的表示.【详解】因为,所以表示从连乘到,一共是个正整数连乘,所以.故选:D.本题考查排列数的表示,难度较易.注意公式:的运用.3、B【解析】
根据茎叶图的数据,结合众数与中位数的概念,即可求解,得到答案.【详解】根据茎叶图中的数据,可得众数是数据中出现次数最多的数据,即众数为,又由中位数的定义,可得数据的中位数为,故选B.本题主要考查了茎叶图的应用,其中解答中正确读取茎叶图的数据,以及熟记众数、中位数的概念是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】
根据纯虚数的定义可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【详解】∵复数z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是纯虚数∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故选C.本题主要考查了纯虚数的概念,解题的关键是要注意m2﹣3m+2≠0,属于基础题.5、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.6、B【解析】∵y2=2px的焦点坐标为,∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.故选B.7、D【解析】
直接把给出的复数写出代数形式,得到对应的点的坐标,则答案可求.【详解】由题意,复数,所以复数对应的点的坐标为位于第一象限,故选A.本题主要考查了复数的代数表示,以及复数的几何意义的应用,其中解答中熟记复数的代数形式和复数的表示是解答本题的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】,,故选B.9、B【解析】分析:设的坐标为,则,求出函数的导数,求得切线的斜率,由两直线平行的条件可得的方程,求得的值从而可得结果.详解:设的坐标为,则,的导数为,在点处的切线斜率为,由切线平行于直线,可得,解得,即有或,故选B.点睛:本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线斜率,考查两直线平行的条件:斜率相等,属于基础题.10、B【解析】
求得,即可求得,再求得,利用交集运算得解.【详解】由得:或,所以,所以由可得:或所以所以故选:B本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.11、A【解析】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A.12、D【解析】
可以得出,从而得出c<a,同样的方法得出a<b,从而得出a,b,c的大小关系.【详解】,,根据对数函数的单调性得到a>c,,又因为,,再由对数函数的单调性得到a<b,∴c<a,且a<b;∴c<a<b.故选D.考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据函数单调性可知若存在零点则零点唯一,由零点存在定理可判断出零点所在区间,从而求得结果.【详解】由题意知:在上单调递增若存在零点,则存在唯一一个零点又,由零点存在定理可知:,则本题正确结果:本题考查零点存在定理的应用,属于基础题.14、【解析】
首先根据奇函数的定义,得到,即,从而确定出函数的解析式,之后对函数求导,结合导数的几何意义,求得对应切线的斜率,应用点斜式写出直线的方程,最后整理成一般式,得到结果.【详解】因为函数是奇函数,所以,从而得到,即,所以,所以,所以切点坐标是,因为,所以,所以曲线在点处的切线方程为,故答案是.该题考查的是有关函数图象在某点处的切线问题,涉及到的知识点有奇函数的定义,导数的几何意义,属于简单题目.15、真.【解析】分析:存在命题只需验证存在即可.详解:由题可知:令x=0,则符合题意故原命题是真命题.点睛:考查存在性命题的真假判断,属于基础题.16、【解析】
根据题意,设B的坐标为,结合题意分析可得A、C的坐标,进而可得的直角边长为2,据此可得,即,计算可得m的值,即可得答案.【详解】根据题意,设B的坐标为,如图:
又由是以A为直角顶点的等腰直角三角形且点A,C的纵坐标相同,
则A、B的横坐标相同,故A的坐标为,C的坐标为,
等腰直角三角形的直角边长为2,
则有,即,
解可得,故答案为:本题主要考查指数函数性质以及函数值的计算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)由平面平面得到平面,从而,根据,得到平面,得到,结合,得到平面;(2)为原点,建立空间坐标系,得到平面和平面的法向量,利用向量的夹角公式,得到法向量之间的夹角余弦,从而得到二面角的正弦值.【详解】(1)证明:∵平面平面,平面平面,,平面,∴平面,则为直线与平面所成的角,为,∴,而平面,∴又,为的中点,∴,平面,则平面,而平面∴,又,分别为,的中点,则,正方形中,,∴,又平面,,∴直线平面;(2)解:以为坐标原点,分别以,所在直线为,轴,过作的平行线为轴建立如图所示空间直角坐标系,则,,,,,,,设平面的法向量为,则,即,取,得;设平面的法向量为,则,即,取,得.∴.∴二面角的正弦值为.本题考查面面垂直的性质,线面垂直的性质和判定,利用空间向量求二面角的正弦值,属于中档题.18、(1);(2)见解析【解析】
由椭圆C:的离心率为,且过点,列方程给,求出,,由此能求出椭圆的标准方程;假设存在满足条件的点,设直线l的方程为,由,得,由此利用韦达定理、直线的斜率,结合已知条件能求出在x轴上存在点,使得直线QM与直线QN的斜率的和为定值1.【详解】椭圆C:的离心率为,且过点.,解得,,椭圆的标准方程为.假设存在满足条件的点,当直线l与x轴垂直时,它与椭圆只有一个交点,不满足题意,直线l的斜率k存在,设直线l的方程为,由,得,设,,则,,,要使对任意实数k,为定值,则只有,此时,,在x轴上存在点,使得直线QM与直线QN的斜率的和为定值1.本题考查椭圆方程的求法,考查满足两直线的斜率和为定值的点是否存在的判断与求法,考查椭圆、直线方程、斜率、韦达定理等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.19、见解析【解析】分析:(1)记,则,分x∈与x∈两类讨论,可证得当时,,即记,同理可证当时,,二者结合即可证得结论;详解:记记,则,当x∈时,F′(x)>0,F(x)单调递增;当x∈时,F′(x)<0,F(x)单调递减.又F(0)=0,F(1)>0,所以当x∈[0,1]时,F(x)≥0,即sinx≥x.记,则.当时,H′(x)≤0,H(x)单调递减.所以H(x)≤H(0)=0,即.综上,,.点睛:本题考查不等式的证明,突出考查利用导数研究函数的单调性及函数恒成立问题,考查分类讨论思想与等价转化思想的综合应用,属于难题.20、【解析】试题分析:分别求出命题,成立的等价条件,利用且为假.确定实数的取值范围.试题解析:真时,合题意.时,.时,为真命题.真时:令,故在恒成立时,为真命题.为真时,.为假命题时,.考点:复合命题的真假.21、(1);(2).【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得不等式的解集;(2)因为,所以,可得,从而可得结果.详解:(1)当时,.由,得.①当时,不等式化为,即.所以,原不等式的解为.②当时,不等式化为,即.所以,原不等式无解.③当时,不等式化为,即.所以,原不等式的解为.综上,原不等式的解为.(2)因为,所以,所以,解得或,即的取值范围为.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同两人合伙协议书
- 2025年眼科药物项目可行性研究报告及运营方案
- 牛衣原体病及其综合防控技术
- 【课件】总体取值规律的估计(第1课时+频率分布直方图)课件-高一下学期数学人教A版(2019)必修第二册
- 2022卖车合同协议书
- 2025年纯电动汽车项目投资分析及可行性报告
- 前台收银合同协议书模板
- 2025秋五年级语文上册统编版-【9 猎人海力布】交互课件
- 饭店解除合作合同协议书
- 模具开发合同协议书范本
- 师带徒培养方案范文
- 山东莱阳核电项目一期工程水土保持方案
- 临床医学概论课程的妇产科学与生殖医学
- 2024年中国铁路物资西安有限公司招聘笔试参考题库含答案解析
- PDCA降低护士针刺伤发生率
- 幼儿园大班美术《脸部彩绘》
- 2021年安全生产月:安全执行力培养专题培训课件
- 陕西碑刻总目提要编纂凡例
- GB/T 3785.1-2023电声学声级计第1部分:规范
- gds系统应急预案
- 国家开放大学《农村政策法规》形成性考核1(平时作业)参考答案
评论
0/150
提交评论