新疆乌鲁木齐市沙依巴克区四中2025届数学高二下期末统考试题含解析_第1页
新疆乌鲁木齐市沙依巴克区四中2025届数学高二下期末统考试题含解析_第2页
新疆乌鲁木齐市沙依巴克区四中2025届数学高二下期末统考试题含解析_第3页
新疆乌鲁木齐市沙依巴克区四中2025届数学高二下期末统考试题含解析_第4页
新疆乌鲁木齐市沙依巴克区四中2025届数学高二下期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆乌鲁木齐市沙依巴克区四中2025届数学高二下期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={x|x2-6x+5≤0},B={x|y=A.1,2 B.1,22.设复数,在复平面内的对应点关于虚轴对称,,则()A.-5 B.5 C.-4+i D.-4-i3.双曲线的左焦点,过点作倾斜角为的直线与圆相交的弦长为,则椭圆C的离心率为()A. B. C. D.4.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A. B. C. D.5.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.6.已知随机变量服从正态分布,且,则()A.-2 B.2 C.4 D.67.函数(为自然对数的底数)在区间上的最大值是()A. B. C. D.8.已知集合,则等于()A. B. C. D.9.已知函数,则函数的定义域为()A. B. C. D.10.根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为A.18 B.24 C.28 D.3611.奇函数在区间上单调递减,且,则不等式的解集是()A. B.C. D.12.五个人站成一排,其中甲乙相邻的站法有()A.18种 B.24种 C.48种 D.36种二、填空题:本题共4小题,每小题5分,共20分。13.在如图所示的十一面体中,用种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.14.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有____个.15.已知函数,则________.16.已知函数的图象上存在点,函数的图象上存在点,且点和点关于原点对称,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(I)若,求曲线在点处的切线方程;(Ⅱ)若函数在上是减函数,即在上恒成立,求实数的取值范围.18.(12分)已知函数,.①时,求的单调区间;②若时,函数的图象总在函数的图象的上方,求实数的取值范围.19.(12分)某超市举办酬宾活动,单次购物超过元的顾客可参与一次抽奖活动,活动规则如下:盒子中装有大小和形状完全相同的个小球,其中个红球、个白球和个黑球,从中不放回地随机抽取个球,每个球被抽到的机会均等.每抽到个红球记分,每抽到个白球记分,每抽到个黑球记分.如果抽取个球总得分分可获得元现金,总得分低于分没有现金,其余得分可获得元现金.(1)设抽取个球总得分为随机变量,求随机变量的分布列;(2)设每位顾客一次抽奖获得现金元,求的数学期望.20.(12分)已知直线的参数方程:(为参数),曲线的参数方程:(为参数),且直线交曲线于,两点.(1)将曲线的参数方程化为普通方程,并求时,的长度;(2)已知点,求当直线倾斜角变化时,的范围.21.(12分)设函数,.(1)求函数的单调区间;(2)当时,若函数没有零点,求的取值范围.22.(10分)如图,某军舰艇位于岛的的正西方处,且与岛的相距12海里.经过侦察发现,国际海盗船以10海里/小时的速度从岛屿出发沿北偏东30°方向逃窜,同时,该军舰艇从处出发沿北偏东的方向匀速追赶国际海盗船,恰好用2小时追上.(1)求该军舰艇的速度.(2)求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由题意,集合A={x|1≤x≤5},B={x|x>2},再根据集合的运算,即可求解.【详解】由题意,集合A={x2-6x+5≤0}={x|1≤x≤5}所以A∩B={x|2<x≤5}=(2,5],故选C.本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】试题分析:由题意,得,则,故选A.考点:1、复数的运算;2、复数的几何意义.3、B【解析】

求出直线方程,利用过过点作倾斜角为的直线与圆相交的弦长为列出方程求解即可.【详解】双曲线的左焦点过点作倾斜角为的直线与圆相交的弦长为,可得:,可得:则双曲线的离心率为:故选:B.本题考查双曲线的简单性质的应用,直线与圆的位置关系的应用,考查离心率的求法,考查计算能力.4、A【解析】

利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【详解】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.故选A.本题主要考查椭圆的离心率,属于基础题.5、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6、D【解析】分析:由题意知随机变量符合正态分布,又知正态曲线关于对称,得到两个概率相等的区间关于对称,得到关于的方程,解方程求得详解:由题随机变量服从正态分布,且,则与关于对称,则故选D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.7、D【解析】分析:先求导,再求函数在区间[-1,1]上的最大值.详解:由题得令因为.所以函数在区间[-1,1]上的最大值为e-1.故答案为D.点睛:(1)本题主要考查利用导数求函数的最值,意在考查学生对该知识的掌握水平.(2)设是定义在闭区间上的函数,在内有导数,可以这样求最值:①求出函数在内的可能极值点(即方程在内的根);②比较函数值,与,其中最大的一个为最大值,最小的一个为最小值.8、D【解析】分析:求出集合,,即可得到.详解:故选D.点睛:本题考查两个集合的交集运算,属基础题.9、B【解析】

根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【详解】因为函数,所以,所以,解得,所以的定义域为.故选:B本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.10、D【解析】分析:按甲乙两人所派地区的人数分类,再对其他人派遣。详解:类型1:设甲、乙两位专家需要派遣的地区有甲乙两人则有,另外3人派往2个地区,共有18种。类型2:设甲、乙两位专家需要派遣的地区有甲乙丙三人则有,另外2人派往2个地区,共有18种。综上一共有36种,故选D点睛:有限制条件的分派问题,从有限制条件的入手,一般采用分步计数原理和分类计数原理,先分类后分步。11、A【解析】

根据函数为奇函数,以及上的单调性,判断出上的单调性,求得的值,对分为四种情况讨论,由此求得不等式的解集,进而求得的解集.【详解】由于函数为奇函数,且在上递减,故在上递减,由于,所以当或时,;当或时,.所以当或时.故当或即或时,.所以不等式的解集为.故本小题选A.本小题主要考查函数的奇偶性、单调性,考查函数变换,考查含有函数符号的不等式的解法,属于中档题.12、C【解析】

将甲乙看作一个大的元素与其他元素进行排列,再乘即可得出结论.【详解】五个人站成一排,其中甲乙相邻,将甲乙看作一个大的元素与其他3人进行排列,再考虑甲乙顺序为,故共种站法.故选:C.本题考查排列组合的应用,求排列组合常用的方法有:元素优先法、插空法、捆绑法、隔板法、间接法等,解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高,本题属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】分析:首先分析几何体的空间结构,然后结合排列组合计算公式整理计算即可求得最终结果.详解:空间几何体由11个顶点确定,首先考虑一种涂色方法:假设A点涂色为颜色CA,B点涂色为颜色CB,C点涂色为颜色CC,由AC的颜色可知D需要涂颜色CB,由AB的颜色可知E需要涂颜色CC,由BC的颜色可知F需要涂颜色CA,由DE的颜色可知G需要涂颜色CA,由DF的颜色可知I需要涂颜色CC,由GI的颜色可知H需要涂颜色CB,据此可知,当△ABC三个顶点的颜色确定之后,其余点的颜色均为确定的,用三种颜色给△ABC的三个顶点涂色的方法有种,故给题中的几何体染色的不同的染色方案种数为6.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.14、14【解析】由题意,得必有,,则具体的排法列表如下:由图可知,不同的“规范01数列”共有14个.故答案为14.15、3【解析】

根据题意,由对数的运算性质可得结合函数的解析式可得,进而计算可得答案.【详解】根据题意,则又由则故答案为:3本题考查了指数、对数的运算和分段函数求值,考查了学生综合分析,数学运算的能力,属于基础题.16、【解析】

由题可以转化为函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,利用导数法求出函数的值域,可得答案.【详解】函数y=﹣x2﹣2的图象与函数y=x2+2的图象关于原点对称,若函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,则f′(x),当x∈[,1)时,f′(x)<0,当x∈(1,e]时,f′(x)>0,故当x=1时,f(x)取最小值3,由f()4,f(e)=e2,故当x=e时,f(x)取最大值e2,故a∈[3,e2],故答案为本题考查的知识点是函数图象的对称性,函数的值域,难度中档.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(1)求出函数的导数,计算f(1),f′(1)的值,写出切线方程即可(2)求出函数的导数,根据函数的单调性求出a的范围即可.【详解】(1)当时,,所以,

所以,又,

所以曲线在点处的切线方程为;

(2)因为函数f(x)在[1,3]上是减函数,

所以在[1,3]上恒成立,令,则,解得,故.所以实数的取值范围.本题主要考查了函数的单调性,函数的最值,导数的应用,恒成立问题,属于中档题.18、(1)的单增区间为;单减区间为.(2)实数a的取值范围【解析】

(1),得的单增区间为;单减区间为.(2).所以19、(1)分布列见解析;(2)【解析】

(1)由题意的可能得分为,分别求出相应的概率,由此能求出随机变量的分布列.(2)由题意得的可能取值为,分别求出相应的概率,由此能求的数学期望.【详解】(1)随机变量的所有可能取值为,,,,.,,,,.随机变量的分布列为(2)由(1)知.本题主要考查了离散型随机变量的分布列、数学期望,考查了学生分析问题、解决问题的能力,属于基础题.20、(1)(2)【解析】分析:(1)联立直线和椭圆方程得到,∴,由点点距离公式得到AB的长度;(2)联立直线和椭圆得到t的二次方程,根据韦达定理得到,进而得到范围.详解:(1)曲线的参数方程:(为参数),曲线的普通方程为.当时,直线的方程为,代入,可得,∴.∴;(2)直线参数方程代入,得.设对应的参数为,∴.点睛:这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.21、当时,的增区间是,当时,的增区间是,减区间是;【解析】

(1)求函数f(x)的导数,利用导数和单调性之间的关系即可求函数的单调区间;(2)根据函数f(x)没有零点,转化为对应方程无解,即可得到结论.【详解】,,,当时,,在区间上单调递增,当时,令,解得;令,解得,综上所述,当时,函数的增区间是,当时,函数的增区间是,减区间是;依题意,函数没有零点,即无解,由1知:当时,函数在区间上为增函数,区间上为减函数,只

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论