




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆西南大学附属中学2025年数学高二第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数存在零点,且,则实数的取值范围是()A. B.C. D.2.若(为虚数单位),则复数()A. B. C. D.3.已知方程在上有两个不等的实数根,则实数的取值范围为()A. B. C. D.4.设随机变量,若,则等于()A. B. C. D.5.若非零向量,满足,向量与垂直,则与的夹角为()A. B. C. D.6.动点在圆上移动时,它与定点连线的中点的轨迹方程是()A. B.C. D.7.已知复数,则的虚部是()A. B. C. D.8.函数是周期为4的偶函数,当时,,则不等式在上的解集是()A. B. C. D.9.某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取个样本,则成绩小于分的样本个数大约为()A. B. C. D.10.已知全集,集合,则()A. B. C. D.11.设随机变量,若,则()A. B. C. D.12.若函数且)在R上既是奇函数,又是减函数,则的图象是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知焦点在轴上的双曲线的渐近线方程为,则双曲线的离心率为____.14.已知函数的图像关于直线对称,则__________.15.若复数满足,则的取值范围是______.16.若随机变量,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,已知圆经过点,且圆心为,求圆的极坐标方程.18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),将圆上每一个点的横坐标不变,纵坐标伸长到原来的2倍,得到曲线.(1)求直线的普通方程及曲线的参数方程;(2)设点在直线上,点在曲线上,求的最小值及此时点的直角坐标.19.(12分)已知A,B为椭圆上的两个动点,满足.(1)求证:原点O到直线AB的距离为定值;(2)求的最大值;(3)求过点O,且分别以OA,OB为直径的两圆的另一个交点P的轨迹方程.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,如将年人流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(,)(2)水电站希望安装的发电机尽可能运行最多,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年流入量发电机最多可运行台数123若某台发电机运行,则该台年利润为4000万元,若某台发电机未运行,则该台年亏损600万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(12分)如图,在四边形中,.(1)求的余弦值;(2)若,求的长.22.(10分)某仪器配件质量采用值进行衡量,某研究所采用不同工艺,开发甲、乙两条生产线生产该配件,为调查两条生产线的生产质量,检验员每隔分别从两条生产线上随机抽取一个配件,测量并记录其值,下面是甲、乙两条生产线各抽取的30个配件值茎叶图.经计算得,,,,其中分别为甲,乙两生产线抽取的第个配件的值.(1)若规定的产品质量等级为合格,否则为不合格.已知产品不合格率需低于,生产线才能通过验收,利用样本估计总体,分析甲,乙两条生产线是否可以通过验收;(2)若规定时,配件质量等级为优等,否则为不优等,试完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“配件质量等级与生产线有关”?产品质量等级优等产品质量等级不优等合计甲生产线乙生产线合计附:0.100.050.010.0012.7063.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
令,可得,设,求得导数,构造,求得导数,判断单调性,即可得到的单调性,可得的范围,即可得到所求的范围.【详解】由题意,函数,令,可得,设,则,由的导数为,当时,,则函数递增,且,则在递增,可得,则,故选D.本题主要考查了函数的零点问题解法,注意运用转化思想和参数分离,考查构造函数法,以及运用函数的单调性,考查运算能力,属于中档题.2、B【解析】由可得:,故选B.3、C【解析】
由于恒成立,构造函数,则方程在上有两个不等的实数根等价于函数在上有两个不同的零点,利用导数研究函数在的值域即可解决问题。【详解】由于恒成立,构造函数,则方程在上有两个不等的实数根等价于函数在上有两个不同的零点,则,(1)当时,则在上恒成立,即函数在上单调递增,当时,,,根据零点定理可得只有唯一零点,不满足题意;(2)当时,令,解得:,令,解得:或,故的单调增区间为,的单调减区间为,①当,即时,则在单调递增,当时,,,根据零点定理可得只有唯一零点,不满足题意;②当,即时,则在上单调递增,在上单调递减,所以当时,,,,故要使函数在上有两个不同的零点,则,解得:;综上所述:方程在上有两个不等的实数根,则实数的取值范围为:故答案选C本题考查方程根的个数问题,可转为函数的零点问题,利用导数讨论函数的单调区间以及最值即可解决问题,有一定的综合性,属于中档题。4、C【解析】由于,则由正态分布图形可知图形关于对称,故,则,故选C.5、B【解析】∵,且与垂直,∴,即,∴,∴,∴与的夹角为.故选.6、B【解析】
设连线的中点为,再表示出动点的坐标,代入圆化简即可.【详解】设连线的中点为,则因为动点与定点连线的中点为,故,又在圆上,故,即即故选:B本题主要考查了轨迹方程的一般方法,属于基础题型.7、B【解析】
将利用复数代数形式的乘除运算化简即可得到答案.【详解】由题意,,所以的虚部是.故选:B本题主要考查复数的基本概念和复数代数形式的乘除运算,属于基础题.8、C【解析】若,则此时是偶函数,即若,则∵函数的周期是4,
即,作出函数在上图象如图,
若,则不等式等价为,此时
若,则不等式等价为,此时,
综上不等式在上的解集为故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.9、A【解析】分析:根据正态分布的意义可得即可得出结论.详解:由题可得:又对称轴为85,故,故成绩小于分的样本个数大约为100x0.04=4故选A.点睛:本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题关键是要知道.10、D【解析】
首先解出集合,,由集合基本运算的定义依次对选项进行判定。【详解】由题可得,;所以,则选项正确;故答案选D本题考查一元二次方程、绝对值不等式的解法以及集合间基本运算,属于基础题。11、A【解析】
根据对立事件的概率公式,先求出,再依二项分布的期望公式求出结果【详解】,即,所以,,故选A.本题主要考查二项分布的期望公式,记准公式是解题的关键.12、A【解析】
由题意首先确定函数g(x)的解析式,然后结合函数的解析式即可确定函数的图像.【详解】∵函数(a>0,a≠1)在R上是奇函数,∴f(0)=0,∴k=2,经检验k=2满足题意,又函数为减函数,所以,所以g(x)=loga(x+2)定义域为x>−2,且单调递减,故选A.本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
焦点在轴上的双曲线的渐近线方程为,可知,由此可求出双曲线的离心率。【详解】由题可设焦点在轴上的双曲线方程为,由于该双曲线的渐近线方程为,则,在双曲线中,所以双曲线的离心率,故双曲线的离心率为。本题考查双曲线的离心率的求法,双曲线渐近方程的应用,属于基础题。14、【解析】
利用辅助角公式化简,结合题意可得,即可求解,得到答案.【详解】由题意,函数,因为函数的图象关于直线对称,所以,两边平方得,解得.本题主要考查了三角函数的图象与性质的应用,其中根据辅助角公式把函数化简为三角函数的形式是研究三角函数性质的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
根据复数的模的几何意义,结合的几何意义,设出圆上任意一点坐标,利用两点间距离公式列式,化简求得的取值范围.【详解】由于复数满足,故复数对应的点在圆心为原点,半径为的圆上,设圆上任意一点的坐标为.表示圆上的点到和两点距离之和,即①,①式平方得,由于,所以,所以,所以,所以.故答案为:.本小题主要考查复数模的几何意义,考查运算求解能力,属于中档题.16、10【解析】
根据题意可知,随机变量满足二项分布,根据公式,即可求出随机变量的方差,再利用公式即可求出。【详解】.故答案为。本题主要考查满足二项分布的随机变量方差的求解,解题时,利用公式将求的问题转化为求的问题,根据两者之间的关系列出等式,进行相关计算。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
首先把极坐标转换为直角坐标,进一步求出圆的方程,再转换为极坐标方程.【详解】点转换为直角坐标为,圆心为,故圆的半径为,圆的方程为.整理得,转换为极坐标方程为,即.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,主要考察学生的运算能力和转换能力,属于基础题型.18、(1)(为参数)(2)【解析】
运用消参求出直线的普通方程,解出曲线的普通方程,然后转化为参数方程转化为点到直线的距离,运用参数方程进行求解【详解】(1)由得,消元得设为圆上的点,在已知变换下变为上的点,依题意得由,得∴化为参数方程为(为参数)(2)由题意,最小值即椭圆上点到直线距离的最小值设,(其中,)∴,此时,即()∴,∴∴.本题考查了普通方程与参数方程之间的转化,需要运用公式熟练求解,在求最值问题时运用参量来求解,转化为三角函数的最值问题。19、(1)证明见解析;(2);(3).【解析】
(1)当直线AB的斜率不存在时,将代入椭圆方程可得,即可得原点O到直线AB的距离为;当直线AB的斜率存在时,设直线AB的方程为,,,与椭圆方程联立,可得,又,则,利用韦达定理代入化简可得,则原点O到直线AB的距离,故原点O到直线AB的距离为定值;(2)由(1)可得,又且,即可得的最大值;(3)如图所示,过点O,且分别以OA,OB为直径的两圆的另一个交点P的轨迹满足:,,可得P,A,B三点共线.由(1)可知:原点O到直线AB的距离为定值,即可得点的轨迹方程.【详解】(1)证明:当直线AB的斜率不存在时,由代入椭圆方程可得:,解得,此时原点O到直线AB的距离为.当直线AB的斜率存在时,设直线AB的方程为,,.联立,化为,,则,,.,化为,化为,化为,原点O到直线AB的距离.综上可得:原点O到直线AB的距离为定值.(2)解:由(1)可得,,,又,当且仅当时取等号.的最大值为.(3)解:如图所示,过点O,且分别以OA,OB为直径的两圆的另一个交点P的轨迹满足:,.因此P,A,B三点共线.由(1)可知:原点O到直线AB的距离为定值.分别以OA,OB为直径的两圆的另一个交点P的轨迹方程为.本题主要考查了椭圆与圆的标准方程及其性质,点到直线的距离公式,基本不等式的运用,考查了逻辑推理和运算求解能力,属于难题.20、(1);(2)2台.【解析】
(1)求出,,,由二项分布,未来4年中,至多有1年的年入流量超过120的概率.(2)记水电站的总利润为(单位,万元),求出安装1台发电机、安装2台发电机、安装3台发电机时的分布列和数学期望,由此能求出欲使水电站年总利润的均值达到最大,应安装发电机的台数.【详解】解:(1)依题意,,,,由二项分布,未来4年中,至多有1年的年入流量超过120的概率为:.(2)记水电站的总利润为Y(单位,万元)安装1台发电机的情形:由于水库年入流总量大于40,故一台发电机运行的概率为1,对应的年利润,,安装2台发电机的情形:依题意,当时,一台发电机运行,此时,因此,当时,两台发电机运行,此时,因此,,由此得Y的分布列如下Y34008000P0.20.8所以.安装3台发电机的情形:依题意,当时,一台发电机运行,此时,因此,当时,两台发电机运行,此时,因此,,当时,三台发电机运行,此时,因此,,由此得Y的分布列如下Y2800740012000P0.20.70.1所以.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.本题考查概率的求法,考查离散型随机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纪检委比选试题及答案
- 2025年按月租赁仓储合同范本
- 草块买卖合同协议书
- 服装店长合同协议书
- 2025有关学校食堂餐饮服务合同
- 高二各科试题及答案
- 装修清包工合同协议书
- 关注数据隐私的试题及答案资讯
- 2025电商行业用工合同模板
- 2025合同范本全书「版」
- 安徽省合肥八中2025届高三最后一卷历史试题及答案
- 计算机系统的故障与维护技巧试题及答案
- 领养猫合同协议书范本
- 【9语二模】2025年安徽合肥市第四十五中学中考二模语文试卷
- 2025年地理信息系统与应用考试试题及答案
- 2025国家开放大学电大【信息管理概论】形考12答案 及 一体化终结性测试答案
- 河南省烟草专卖局(公司)笔试试题2024
- 中国文化概论知识试题及答案
- 烟台购房协议书
- 2025年中考生物模拟测试卷及答案
- 中国经导管主动脉瓣置换术临床路径专家共识(2024版)解读
评论
0/150
提交评论